-
Notifications
You must be signed in to change notification settings - Fork 2
/
e04_2_doBrainDownsample.m
395 lines (336 loc) · 12.7 KB
/
e04_2_doBrainDownsample.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
% Downsample GBM data to compare stability of CERRM and ETM
% Estimated runtime: 65 seconds
%% Pre-setup
clearvars
addpath('./mfiles')
rng(12345)
%% Load data
load('./data/gbm/TCGA-06-0185-1.mat');
t1=t;
Cp1=Cp;
Crr1=Crr;
Ct1=Ct(:,max(Ct)'>0.05 & max(Ct)'<1);
load('./data/gbm/TCGA-06-0185-2.mat');
t2=t;
Cp2=Cp;
Crr2=Crr;
Ct2=Ct(:,max(Ct)'>0.05 & max(Ct)'<1);
load('./data/gbm/TCGA-06-0881-1.mat');
t3=t;
Cp3=Cp;
Crr3=Crr;
Ct3=Ct(:,max(Ct)'>0.05 & max(Ct)'<1);
% The loaded data contains:
% t [70x1] - time (in minutes) at each dce frame
% Cp [70x1] - concentration in blood plasma
% Crr [70x1] - concentration in reference region
% Ct [70x10813] - concentration in tumour voxels (10813 voxels)
tic
%% Fit to high temporal resolution (5.4 s - original) data
% CERRM
[tempPkCE1, ~, estKepRR1(1)]=CERRM(Ct1,Crr1,t1);
[tempPkCE2, ~, estKepRR2(1)]=CERRM(Ct2,Crr2,t2);
[tempPkCE3, ~, estKepRR3(1)]=CERRM(Ct3,Crr3,t3);
% ETM
tempPkET1=LLSQ(Ct1,Cp1,t1,1);
tempPkET2=LLSQ(Ct2,Cp2,t2,1);
tempPkET3=LLSQ(Ct3,Cp3,t3,1);
% 'true' parameters are fits at original temporal resolution
trueKtCE = [tempPkCE1(:,1); tempPkCE2(:,1); tempPkCE3(:,1)];
trueVeCE = [tempPkCE1(:,2); tempPkCE2(:,2); tempPkCE3(:,2)];
trueKepCE = [tempPkCE1(:,3); tempPkCE2(:,3); tempPkCE3(:,3)];
trueVpCE = [tempPkCE1(:,4); tempPkCE2(:,4); tempPkCE3(:,4)];
trueKtET = [tempPkET1(:,1); tempPkET2(:,1); tempPkET3(:,1)];
trueKepET = [tempPkET1(:,2); tempPkET2(:,2); tempPkET3(:,2)];
trueVeET = trueKtET ./ trueKepET;
trueVpET = [tempPkET1(:,3); tempPkET2(:,3); tempPkET3(:,3)];
TRes(1) = 60*(t(2)-t(1));
% Save the fitted parameters (for first patient - Figure 6)
rawFitsET = zeros([size(tempPkET1) 12]);
rawFitsCE = zeros([size(tempPkCE1) 12]);
rawFitsET(:,:,1) = tempPkET1;
rawFitsCE(:,:,1) = tempPkCE1;
%% Downsample the data and refit
nVox1 = size(Ct1,2);
nVox2 = size(Ct2,2);
nVox3 = size(Ct3,2);
for i=2:12
% Randomize the first frame when downsampling
phaseValues1 = randi([0 i-1],nVox1,1);
phaseValues2 = randi([0 i-1],nVox2,1);
phaseValues3 = randi([0 i-1],nVox3,1);
clearvars tempPkCE tempPkET pkERRM
for j=1:nVox1
curCt = downsample(Ct1(:,j),i,phaseValues1(j));
curCrr = downsample(Crr1,i,phaseValues1(j));
curCp = downsample(Cp1,i,phaseValues1(j));
curT = downsample(t1,i,phaseValues1(j));
pkERRM1(j,:)=ERRM(curCt,curCrr,curT,0,0,0); % ERRM
tempPkET1(j,:)=LLSQ(curCt,curCp,curT,1); % ETM
end
for j=1:nVox2
curCt = downsample(Ct2(:,j),i,phaseValues2(j));
curCrr = downsample(Crr2,i,phaseValues2(j));
curCp = downsample(Cp2,i,phaseValues2(j));
curT = downsample(t2,i,phaseValues2(j));
pkERRM2(j,:)=ERRM(curCt,curCrr,curT,0,0,0); % ERRM
tempPkET2(j,:)=LLSQ(curCt,curCp,curT,1); % ETM
end
for j=1:nVox3
curCt = downsample(Ct3(:,j),i,phaseValues3(j));
curCrr = downsample(Crr3,i,phaseValues3(j));
curCp = downsample(Cp3,i,phaseValues3(j));
curT = downsample(t3,i,phaseValues3(j));
pkERRM3(j,:)=ERRM(curCt,curCrr,curT,0,0,0); % ERRM
tempPkET3(j,:)=LLSQ(curCt,curCp,curT,1); % ETM
end
% Get estimate for kepRR - from ERRM
pkERRM = pkERRM1;
rawKepRR = pkERRM(:,5);
% Find voxels where all estimates are real and positive
goodVals = pkERRM(:,1)>0 & pkERRM(:,2)>0 & pkERRM(:,3)>0 & pkERRM(:,4)>0 & pkERRM(:,5)>0 & imag(pkERRM(:,5))==0;
estKepRR1(i) = iqrMean(rawKepRR(goodVals));
pkERRM = pkERRM2;
rawKepRR = pkERRM(:,5);
% Find voxels where all estimates are real and positive
goodVals = pkERRM(:,1)>0 & pkERRM(:,2)>0 & pkERRM(:,3)>0 & pkERRM(:,4)>0 & pkERRM(:,5)>0 & imag(pkERRM(:,5))==0;
estKepRR2(i) = iqrMean(rawKepRR(goodVals));
pkERRM = pkERRM3;
rawKepRR = pkERRM(:,5);
% Find voxels where all estimates are real and positive
goodVals = pkERRM(:,1)>0 & pkERRM(:,2)>0 & pkERRM(:,3)>0 & pkERRM(:,4)>0 & pkERRM(:,5)>0 & imag(pkERRM(:,5))==0;
estKepRR3(i) = iqrMean(rawKepRR(goodVals));
% Now fit CERRM
for j=1:nVox1
curCt = downsample(Ct1(:,j),i,phaseValues1(j));
curCrr = downsample(Crr1,i,phaseValues1(j));
curCp = downsample(Cp1,i,phaseValues1(j));
curT = downsample(t1,i,phaseValues1(j));
tempPkCE1(j,:)=CERRM(curCt,curCrr,curT,estKepRR1(i));
end
for j=1:nVox2
curCt = downsample(Ct2(:,j),i,phaseValues2(j));
curCrr = downsample(Crr2,i,phaseValues2(j));
curCp = downsample(Cp2,i,phaseValues2(j));
curT = downsample(t2,i,phaseValues2(j));
tempPkCE2(j,:)=CERRM(curCt,curCrr,curT,estKepRR2(i));
end
for j=1:nVox3
curCt = downsample(Ct3(:,j),i,phaseValues3(j));
curCrr = downsample(Crr3,i,phaseValues3(j));
curCp = downsample(Cp3,i,phaseValues3(j));
curT = downsample(t3,i,phaseValues3(j));
tempPkCE3(j,:)=CERRM(curCt,curCrr,curT,estKepRR3(i));
end
rawFitsET(:,:,i) = tempPkET1;
rawFitsCE(:,:,i) = tempPkCE1;
% Calculate percent change
tempErrKtCE=PercentError([tempPkCE1(:,1); tempPkCE2(:,1); tempPkCE3(:,1)],trueKtCE);
tempErrVeCE=PercentError([tempPkCE1(:,2); tempPkCE2(:,2); tempPkCE3(:,2)],trueVeCE);
tempErrKepCE=PercentError([tempPkCE1(:,3); tempPkCE2(:,3); tempPkCE3(:,3)],trueKepCE);
tempErrVpCE=PercentError([tempPkCE1(:,4); tempPkCE2(:,4); tempPkCE3(:,4)],trueVpCE);
tempErrKtET=PercentError([tempPkET1(:,1); tempPkET2(:,1); tempPkET3(:,1)],trueKtET);
tempErrVeET=PercentError([tempPkET1(:,1); tempPkET2(:,1); tempPkET3(:,1)]./[tempPkET1(:,2); tempPkET2(:,2); tempPkET3(:,2)],trueVeET);
tempErrKepET=PercentError([tempPkET1(:,2); tempPkET2(:,2); tempPkET3(:,2)],trueKepET);
tempErrVpET=PercentError([tempPkET1(:,3); tempPkET2(:,3); tempPkET3(:,3)],trueVpET);
% Get quartiles
% (Order is not efficient - could preallocate to improve speed)
qKtCE(i,:)=quantile(tempErrKtCE(:),[.25 .5 .75]);
qVeCE(i,:)=quantile(tempErrVeCE(:),[.25 .5 .75]);
qKepCE(i,:)=quantile(tempErrKepCE(:),[.25 .5 .75]);
qVpCE(i,:)=quantile(tempErrVpCE(:),[.25 .5 .75]);
qKtET(i,:)=quantile(tempErrKtET(:),[.25 .5 .75]);
qVeET(i,:)=quantile(tempErrVeET(:),[.25 .5 .75]);
qKepET(i,:)=quantile(tempErrKepET(:),[.25 .5 .75]);
qVpET(i,:)=quantile(tempErrVpET(:),[.25 .5 .75]);
TRes(i) = 60*(curT(2)-curT(1));
end
toc
%% Plot: Median +/- interquartile range vs Temporal Resolution
lErr = 1;
hErr = 3;
cCE = [.5 .2 .55];
cET = [.3 .7 .6];
figure('Position',[300 300 1000 300])
subplot(1,4,1)
hold on
shadedErrorPlot(TRes',qKtET(:,2),qKtET(:,lErr),qKtET(:,hErr),cET,1);
shadedErrorPlot(TRes',qKtCE(:,2),qKtCE(:,lErr),qKtCE(:,hErr),cCE,1);
hold off
ylim([-100 100])
xlabel('Temporal Resolution [s]')
ylabel('Percent Error')
title('Ktrans')
subplot(1,4,2)
hold on
shadedErrorPlot(TRes',qKepET(:,2),qKepET(:,lErr),qKepET(:,hErr),cET,1);
shadedErrorPlot(TRes',qKepCE(:,2),qKepCE(:,lErr),qKepCE(:,hErr),cCE,1);
hold off
ylim([-100 100])
xlabel('Temporal Resolution [s]')
ylabel('Percent Error')
title('kep')
subplot(1,4,3)
hold on
shadedErrorPlot(TRes',qVeET(:,2),qVeET(:,lErr),qVeET(:,hErr),cET,1);
shadedErrorPlot(TRes',qVeCE(:,2),qVeCE(:,lErr),qVeCE(:,hErr),cCE,1);
hold off
ylim([-100 100])
xlabel('Temporal Resolution [s]')
ylabel('Percent Error')
title('ve')
subplot(1,4,4)
hold on
shadedErrorPlot(TRes',qVpET(:,2),qVpET(:,lErr),qVpET(:,hErr),cET,1);
shadedErrorPlot(TRes',qVpCE(:,2),qVpCE(:,lErr),qVpCE(:,hErr),cCE,1);
hold off
ylim([-100 300])
xlabel('Temporal Resolution [s]')
ylabel('Percent Error')
title('vp')
%% Plot downsampled maps (Fig 6) - Preparation
load('./data/gbm/TCGA-06-0185-1.mat');
mask = mask>0;
mask(mask) = max(Ct)'>0.05 & max(Ct)'<1;
[mapKtET, mapKepET, mapVeET, mapVpET, ...
mapKtCE, mapKepCE, mapVeCE, mapVpCE] = deal(zeros([length(mask(:)) 12]));
for i=1:12
mapKtET(mask(:),i) = rawFitsET(:,1,i);
mapVeET(mask(:),i) = rawFitsET(:,1,i)./rawFitsET(:,2,i);
mapKepET(mask(:),i) = rawFitsET(:,2,i);
mapVpET(mask(:),i) = rawFitsET(:,3,i);
mapKtCE(mask(:),i) = rawFitsCE(:,1,i);
mapVeCE(mask(:),i) = rawFitsCE(:,2,i);
mapKepCE(mask(:),i) = rawFitsCE(:,3,i);
mapVpCE(mask(:),i) = rawFitsCE(:,4,i);
end
mapKtET = reshape(mapKtET,[size(mask) 12]);
mapVeET = reshape(mapVeET,[size(mask) 12]);
mapKepET = reshape(mapKepET,[size(mask) 12]);
mapVpET = reshape(mapVpET,[size(mask) 12]);
mapKtCE = reshape(mapKtCE,[size(mask) 12]);
mapVeCE = reshape(mapVeCE,[size(mask) 12]);
mapKepCE = reshape(mapKepCE,[size(mask) 12]);
mapVpCE = reshape(mapVpCE,[size(mask) 12]);
%% Plot downsampled maps
% Pick which slice to plot
chosenSlice = 7; % Manuscript uses slice 7
% The temporal resolutions will be TRes(tresList)
tresList = [1,6,12];
% Code is designed to work for [1,6,12] - changing it will cause issues
% Specifically, the subplots will not show correctly.
for i=tresList
curMapKtET = AutoCrop(mapKtET(:,:,:,i));
curMapVeET = AutoCrop(mapVeET(:,:,:,i));
curMapKepET = AutoCrop(mapKepET(:,:,:,i));
curMapVpET = AutoCrop(mapVpET(:,:,:,i));
curMapKtCE = AutoCrop(mapKtCE(:,:,:,i));
curMapVeCE = AutoCrop(mapVeCE(:,:,:,i));
curMapKepCE = AutoCrop(mapKepCE(:,:,:,i));
curMapVpCE = AutoCrop(mapVpCE(:,:,:,i));
figure(1)
subplot(2,3,round(i/6)+1)
imagesc(curMapKtET(:,:,chosenSlice))
caxis([0 0.1]); colormap('jet')
axis image; set(gca,'xtick',[]); set(gca,'ytick',[])
if i==1
ylabel('ETM-Ktrans')
end
xlabel([num2str(TRes(i)) ' s'])
subplot(2,3,round(i/6)+4)
imagesc(curMapKtCE(:,:,chosenSlice))
caxis([0 3]); colormap('jet')
axis image; set(gca,'xtick',[]); set(gca,'ytick',[])
if i==1
ylabel('CERRM-Ktrans')
end
xlabel([num2str(TRes(i)) ' s'])
figure(2)
subplot(2,3,round(i/6)+1)
imagesc(curMapKepET(:,:,chosenSlice))
caxis([0 1]); colormap('jet')
axis image; set(gca,'xtick',[]); set(gca,'ytick',[])
if i==1
ylabel('ETM-kep')
end
xlabel([num2str(TRes(i)) ' s'])
subplot(2,3,round(i/6)+4)
imagesc(curMapKepCE(:,:,chosenSlice))
caxis([0 1]); colormap('jet')
axis image; set(gca,'xtick',[]); set(gca,'ytick',[])
if i==1
ylabel('CERRM-kep')
end
xlabel([num2str(TRes(i)) ' s'])
figure(3)
subplot(2,3,round(i/6)+1)
imagesc(curMapVeET(:,:,chosenSlice))
caxis([0 0.35]); colormap('jet')
axis image; set(gca,'xtick',[]); set(gca,'ytick',[])
if i==1
ylabel('ETM-ve')
end
xlabel([num2str(TRes(i)) ' s'])
subplot(2,3,round(i/6)+4)
imagesc(curMapVeCE(:,:,chosenSlice))
caxis([0 5]); colormap('jet')
axis image; set(gca,'xtick',[]); set(gca,'ytick',[])
if i==1
ylabel('CERRM-ve')
end
xlabel([num2str(TRes(i)) ' s'])
figure(4)
subplot(2,3,round(i/6)+1)
imagesc(curMapVpET(:,:,chosenSlice))
caxis([0 0.05]); colormap('jet')
axis image; set(gca,'xtick',[]); set(gca,'ytick',[])
if i==1
ylabel('ETM-vp')
end
xlabel([num2str(TRes(i)) ' s'])
subplot(2,3,round(i/6)+4)
imagesc(curMapVpCE(:,:,chosenSlice))
caxis([0 1]); colormap('jet')
axis image; set(gca,'xtick',[]); set(gca,'ytick',[])
if i==1
ylabel('CERRM-vp')
end
xlabel([num2str(TRes(i)) ' s'])
end
%% Plot all the input functions and reference region curves (SuppFigS4)
% Colours might be different between these and manuscript version
figure;
subplot(1,2,1)
plot(t,[Cp1 Cp2 Cp3], 'linewidth', 3)
ylim([0 16])
xlabel('Time [min]')
ylabel('Concentration [mM]')
subplot(1,2,2)
plot(t,[Crr1 Crr2 Crr3], 'linewidth', 3)
ylim([0 0.3])
xlabel('Time [min]')
ylabel('Concentration [mM]')
%% Export results to CSV
% This exports the median error (err), and 25th and 75th quantiles (qt25, qt75)
% to a CSV file.
% I don't think this ended up being used. But it's here incase someone
% finds it useful.
% Headers are:
% - errKt, errVe, etc - Median percent change
% - qt25Kt, qt25Ve, etc - 25th percentile (1st quartile) of percent change
% - qt75Kt, qt75Ve, etc - 75th percentile (3rd quartile) of percent change
outFile = fullfile('./dataResults',['e04-downsampleGbmResults.csv']);
hdr=['FitMethod,TemporalRes,errKt,errVe,errKep,errVp,qt25Kt,qt75Kt,qt25Ve,qt75Ve,qt25Kep,qt75Kep,qt25Vp,qt75Vp'];
outID = fopen(outFile, 'w+');
fprintf(outID, '%s\n', hdr); % Print header into csv file
for i=1:12
outLine = {'ETM',TRes(i),qKtET(i,2),qVeET(i,2),qKepET(i,2),qVpET(i,2),...
qKtET(i,1),qKtET(i,3),qVeET(i,1),qVeET(i,3),qKepET(i,1),qKepET(i,3),...
qVpET(i,1),qVpET(i,3)};
fprintf(outID,'%s,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n', outLine{:});
outLine = {'CERRM',TRes(i),qKtCE(i,2),qVeCE(i,2),qKepCE(i,2),qVpCE(i,2),...
qKtCE(i,1),qKtCE(i,3),qVeCE(i,1),qVeCE(i,3),qKepCE(i,1),qKepCE(i,3),...
qVpCE(i,1),qVpCE(i,3)};
fprintf(outID,'%s,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n', outLine{:});
end
fclose(outID)