-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
api_v2.py
460 lines (382 loc) · 17.5 KB
/
api_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
"""
# WebAPI文档
` python api_v2.py -a 127.0.0.1 -p 9880 -c GPT_SoVITS/configs/tts_infer.yaml `
## 执行参数:
`-a` - `绑定地址, 默认"127.0.0.1"`
`-p` - `绑定端口, 默认9880`
`-c` - `TTS配置文件路径, 默认"GPT_SoVITS/configs/tts_infer.yaml"`
## 调用:
### 推理
endpoint: `/tts`
GET:
```
http://127.0.0.1:9880/tts?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_lang=zh&ref_audio_path=archive_jingyuan_1.wav&prompt_lang=zh&prompt_text=我是「罗浮」云骑将军景元。不必拘谨,「将军」只是一时的身份,你称呼我景元便可&text_split_method=cut5&batch_size=1&media_type=wav&streaming_mode=true
```
POST:
```json
{
"text": "", # str.(required) text to be synthesized
"text_lang: "", # str.(required) language of the text to be synthesized
"ref_audio_path": "", # str.(required) reference audio path
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion
"prompt_text": "", # str.(optional) prompt text for the reference audio
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
"top_k": 5, # int. top k sampling
"top_p": 1, # float. top p sampling
"temperature": 1, # float. temperature for sampling
"text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details.
"batch_size": 1, # int. batch size for inference
"batch_threshold": 0.75, # float. threshold for batch splitting.
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
"speed_factor":1.0, # float. control the speed of the synthesized audio.
"streaming_mode": False, # bool. whether to return a streaming response.
"seed": -1, # int. random seed for reproducibility.
"parallel_infer": True, # bool. whether to use parallel inference.
"repetition_penalty": 1.35 # float. repetition penalty for T2S model.
}
```
RESP:
成功: 直接返回 wav 音频流, http code 200
失败: 返回包含错误信息的 json, http code 400
### 命令控制
endpoint: `/control`
command:
"restart": 重新运行
"exit": 结束运行
GET:
```
http://127.0.0.1:9880/control?command=restart
```
POST:
```json
{
"command": "restart"
}
```
RESP: 无
### 切换GPT模型
endpoint: `/set_gpt_weights`
GET:
```
http://127.0.0.1:9880/set_gpt_weights?weights_path=GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
```
RESP:
成功: 返回"success", http code 200
失败: 返回包含错误信息的 json, http code 400
### 切换Sovits模型
endpoint: `/set_sovits_weights`
GET:
```
http://127.0.0.1:9880/set_sovits_weights?weights_path=GPT_SoVITS/pretrained_models/s2G488k.pth
```
RESP:
成功: 返回"success", http code 200
失败: 返回包含错误信息的 json, http code 400
"""
import os
import sys
import traceback
from typing import Generator
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))
import argparse
import subprocess
import wave
import signal
import numpy as np
import soundfile as sf
from fastapi import FastAPI, Request, HTTPException, Response
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi import FastAPI, UploadFile, File
import uvicorn
from io import BytesIO
from tools.i18n.i18n import I18nAuto
from GPT_SoVITS.TTS_infer_pack.TTS import TTS, TTS_Config
from GPT_SoVITS.TTS_infer_pack.text_segmentation_method import get_method_names as get_cut_method_names
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
# print(sys.path)
i18n = I18nAuto()
cut_method_names = get_cut_method_names()
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
parser.add_argument("-c", "--tts_config", type=str, default="GPT_SoVITS/configs/tts_infer.yaml", help="tts_infer路径")
parser.add_argument("-a", "--bind_addr", type=str, default="127.0.0.1", help="default: 127.0.0.1")
parser.add_argument("-p", "--port", type=int, default="9880", help="default: 9880")
args = parser.parse_args()
config_path = args.tts_config
# device = args.device
port = args.port
host = args.bind_addr
argv = sys.argv
if config_path in [None, ""]:
config_path = "GPT-SoVITS/configs/tts_infer.yaml"
tts_config = TTS_Config(config_path)
print(tts_config)
tts_pipeline = TTS(tts_config)
APP = FastAPI()
class TTS_Request(BaseModel):
text: str = None
text_lang: str = None
ref_audio_path: str = None
aux_ref_audio_paths: list = None
prompt_lang: str = None
prompt_text: str = ""
top_k:int = 5
top_p:float = 1
temperature:float = 1
text_split_method:str = "cut5"
batch_size:int = 1
batch_threshold:float = 0.75
split_bucket:bool = True
speed_factor:float = 1.0
fragment_interval:float = 0.3
seed:int = -1
media_type:str = "wav"
streaming_mode:bool = False
parallel_infer:bool = True
repetition_penalty:float = 1.35
### modify from https://github.com/RVC-Boss/GPT-SoVITS/pull/894/files
def pack_ogg(io_buffer:BytesIO, data:np.ndarray, rate:int):
with sf.SoundFile(io_buffer, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
audio_file.write(data)
return io_buffer
def pack_raw(io_buffer:BytesIO, data:np.ndarray, rate:int):
io_buffer.write(data.tobytes())
return io_buffer
def pack_wav(io_buffer:BytesIO, data:np.ndarray, rate:int):
io_buffer = BytesIO()
sf.write(io_buffer, data, rate, format='wav')
return io_buffer
def pack_aac(io_buffer:BytesIO, data:np.ndarray, rate:int):
process = subprocess.Popen([
'ffmpeg',
'-f', 's16le', # 输入16位有符号小端整数PCM
'-ar', str(rate), # 设置采样率
'-ac', '1', # 单声道
'-i', 'pipe:0', # 从管道读取输入
'-c:a', 'aac', # 音频编码器为AAC
'-b:a', '192k', # 比特率
'-vn', # 不包含视频
'-f', 'adts', # 输出AAC数据流格式
'pipe:1' # 将输出写入管道
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, _ = process.communicate(input=data.tobytes())
io_buffer.write(out)
return io_buffer
def pack_audio(io_buffer:BytesIO, data:np.ndarray, rate:int, media_type:str):
if media_type == "ogg":
io_buffer = pack_ogg(io_buffer, data, rate)
elif media_type == "aac":
io_buffer = pack_aac(io_buffer, data, rate)
elif media_type == "wav":
io_buffer = pack_wav(io_buffer, data, rate)
else:
io_buffer = pack_raw(io_buffer, data, rate)
io_buffer.seek(0)
return io_buffer
# from https://huggingface.co/spaces/coqui/voice-chat-with-mistral/blob/main/app.py
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=32000):
# This will create a wave header then append the frame input
# It should be first on a streaming wav file
# Other frames better should not have it (else you will hear some artifacts each chunk start)
wav_buf = BytesIO()
with wave.open(wav_buf, "wb") as vfout:
vfout.setnchannels(channels)
vfout.setsampwidth(sample_width)
vfout.setframerate(sample_rate)
vfout.writeframes(frame_input)
wav_buf.seek(0)
return wav_buf.read()
def handle_control(command:str):
if command == "restart":
os.execl(sys.executable, sys.executable, *argv)
elif command == "exit":
os.kill(os.getpid(), signal.SIGTERM)
exit(0)
def check_params(req:dict):
text:str = req.get("text", "")
text_lang:str = req.get("text_lang", "")
ref_audio_path:str = req.get("ref_audio_path", "")
streaming_mode:bool = req.get("streaming_mode", False)
media_type:str = req.get("media_type", "wav")
prompt_lang:str = req.get("prompt_lang", "")
text_split_method:str = req.get("text_split_method", "cut5")
if ref_audio_path in [None, ""]:
return JSONResponse(status_code=400, content={"message": "ref_audio_path is required"})
if text in [None, ""]:
return JSONResponse(status_code=400, content={"message": "text is required"})
if (text_lang in [None, ""]) :
return JSONResponse(status_code=400, content={"message": "text_lang is required"})
elif text_lang.lower() not in tts_config.languages:
return JSONResponse(status_code=400, content={"message": f"text_lang: {text_lang} is not supported in version {tts_config.version}"})
if (prompt_lang in [None, ""]) :
return JSONResponse(status_code=400, content={"message": "prompt_lang is required"})
elif prompt_lang.lower() not in tts_config.languages:
return JSONResponse(status_code=400, content={"message": f"prompt_lang: {prompt_lang} is not supported in version {tts_config.version}"})
if media_type not in ["wav", "raw", "ogg", "aac"]:
return JSONResponse(status_code=400, content={"message": f"media_type: {media_type} is not supported"})
elif media_type == "ogg" and not streaming_mode:
return JSONResponse(status_code=400, content={"message": "ogg format is not supported in non-streaming mode"})
if text_split_method not in cut_method_names:
return JSONResponse(status_code=400, content={"message": f"text_split_method:{text_split_method} is not supported"})
return None
async def tts_handle(req:dict):
"""
Text to speech handler.
Args:
req (dict):
{
"text": "", # str.(required) text to be synthesized
"text_lang: "", # str.(required) language of the text to be synthesized
"ref_audio_path": "", # str.(required) reference audio path
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker synthesis
"prompt_text": "", # str.(optional) prompt text for the reference audio
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
"top_k": 5, # int. top k sampling
"top_p": 1, # float. top p sampling
"temperature": 1, # float. temperature for sampling
"text_split_method": "cut5", # str. text split method, see text_segmentation_method.py for details.
"batch_size": 1, # int. batch size for inference
"batch_threshold": 0.75, # float. threshold for batch splitting.
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
"speed_factor":1.0, # float. control the speed of the synthesized audio.
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
"seed": -1, # int. random seed for reproducibility.
"media_type": "wav", # str. media type of the output audio, support "wav", "raw", "ogg", "aac".
"streaming_mode": False, # bool. whether to return a streaming response.
"parallel_infer": True, # bool.(optional) whether to use parallel inference.
"repetition_penalty": 1.35 # float.(optional) repetition penalty for T2S model.
}
returns:
StreamingResponse: audio stream response.
"""
streaming_mode = req.get("streaming_mode", False)
return_fragment = req.get("return_fragment", False)
media_type = req.get("media_type", "wav")
check_res = check_params(req)
if check_res is not None:
return check_res
if streaming_mode or return_fragment:
req["return_fragment"] = True
try:
tts_generator=tts_pipeline.run(req)
if streaming_mode:
def streaming_generator(tts_generator:Generator, media_type:str):
if media_type == "wav":
yield wave_header_chunk()
media_type = "raw"
for sr, chunk in tts_generator:
yield pack_audio(BytesIO(), chunk, sr, media_type).getvalue()
# _media_type = f"audio/{media_type}" if not (streaming_mode and media_type in ["wav", "raw"]) else f"audio/x-{media_type}"
return StreamingResponse(streaming_generator(tts_generator, media_type, ), media_type=f"audio/{media_type}")
else:
sr, audio_data = next(tts_generator)
audio_data = pack_audio(BytesIO(), audio_data, sr, media_type).getvalue()
return Response(audio_data, media_type=f"audio/{media_type}")
except Exception as e:
return JSONResponse(status_code=400, content={"message": f"tts failed", "Exception": str(e)})
@APP.get("/control")
async def control(command: str = None):
if command is None:
return JSONResponse(status_code=400, content={"message": "command is required"})
handle_control(command)
@APP.get("/tts")
async def tts_get_endpoint(
text: str = None,
text_lang: str = None,
ref_audio_path: str = None,
aux_ref_audio_paths:list = None,
prompt_lang: str = None,
prompt_text: str = "",
top_k:int = 5,
top_p:float = 1,
temperature:float = 1,
text_split_method:str = "cut0",
batch_size:int = 1,
batch_threshold:float = 0.75,
split_bucket:bool = True,
speed_factor:float = 1.0,
fragment_interval:float = 0.3,
seed:int = -1,
media_type:str = "wav",
streaming_mode:bool = False,
parallel_infer:bool = True,
repetition_penalty:float = 1.35
):
req = {
"text": text,
"text_lang": text_lang.lower(),
"ref_audio_path": ref_audio_path,
"aux_ref_audio_paths": aux_ref_audio_paths,
"prompt_text": prompt_text,
"prompt_lang": prompt_lang.lower(),
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"text_split_method": text_split_method,
"batch_size":int(batch_size),
"batch_threshold":float(batch_threshold),
"speed_factor":float(speed_factor),
"split_bucket":split_bucket,
"fragment_interval":fragment_interval,
"seed":seed,
"media_type":media_type,
"streaming_mode":streaming_mode,
"parallel_infer":parallel_infer,
"repetition_penalty":float(repetition_penalty)
}
return await tts_handle(req)
@APP.post("/tts")
async def tts_post_endpoint(request: TTS_Request):
req = request.dict()
return await tts_handle(req)
@APP.get("/set_refer_audio")
async def set_refer_aduio(refer_audio_path: str = None):
try:
tts_pipeline.set_ref_audio(refer_audio_path)
except Exception as e:
return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
return JSONResponse(status_code=200, content={"message": "success"})
# @APP.post("/set_refer_audio")
# async def set_refer_aduio_post(audio_file: UploadFile = File(...)):
# try:
# # 检查文件类型,确保是音频文件
# if not audio_file.content_type.startswith("audio/"):
# return JSONResponse(status_code=400, content={"message": "file type is not supported"})
# os.makedirs("uploaded_audio", exist_ok=True)
# save_path = os.path.join("uploaded_audio", audio_file.filename)
# # 保存音频文件到服务器上的一个目录
# with open(save_path , "wb") as buffer:
# buffer.write(await audio_file.read())
# tts_pipeline.set_ref_audio(save_path)
# except Exception as e:
# return JSONResponse(status_code=400, content={"message": f"set refer audio failed", "Exception": str(e)})
# return JSONResponse(status_code=200, content={"message": "success"})
@APP.get("/set_gpt_weights")
async def set_gpt_weights(weights_path: str = None):
try:
if weights_path in ["", None]:
return JSONResponse(status_code=400, content={"message": "gpt weight path is required"})
tts_pipeline.init_t2s_weights(weights_path)
except Exception as e:
return JSONResponse(status_code=400, content={"message": f"change gpt weight failed", "Exception": str(e)})
return JSONResponse(status_code=200, content={"message": "success"})
@APP.get("/set_sovits_weights")
async def set_sovits_weights(weights_path: str = None):
try:
if weights_path in ["", None]:
return JSONResponse(status_code=400, content={"message": "sovits weight path is required"})
tts_pipeline.init_vits_weights(weights_path)
except Exception as e:
return JSONResponse(status_code=400, content={"message": f"change sovits weight failed", "Exception": str(e)})
return JSONResponse(status_code=200, content={"message": "success"})
if __name__ == "__main__":
try:
if host == 'None': # 在调用时使用 -a None 参数,可以让api监听双栈
host = None
uvicorn.run(app=APP, host=host, port=port, workers=1)
except Exception as e:
traceback.print_exc()
os.kill(os.getpid(), signal.SIGTERM)
exit(0)