-
Notifications
You must be signed in to change notification settings - Fork 9
/
main.py
473 lines (396 loc) · 23.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import argparse
import os
import sys
import datetime
from tqdm import tqdm
import torch
import torch.nn as nn
import src.models as models
import data
import src
import src.supervision
import src.supervision.metrics as metrics
import src.dataset.box_pose_dataset_factory as dataset_factory
import src.dataset.depthmap_val_dataset as depthmap_val_dataset
import src.dataset.real_dataloader as real_dataloader
import src.dataset as dataset
import src.io as io
import src.utils as utils
import src.dataset.samplers.pose.pose_sampler as pose_sampler
import numpy as np
import torch
import src.dataset.samplers.intrinsics_generator as intrinsics_generator
import src.other as other
from src.dataset.rendering.box_renderer import BoxRenderFlags
import random
import time
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_arguments(args):
usage_text = (
"StructureNet train/test executor."
"Usage: python main.py [options],"
" with [options]:"
)
parser = argparse.ArgumentParser(description=usage_text)
# durations
parser.add_argument('-e','--epochs', type = int, default=20, help = "Train for a total number of <epochs> epochs.")
parser.add_argument('-b','--batch_size', type = int, default=5, help = "Train with a <batch_size> number of samples each train iteration.")
parser.add_argument('--test_batch_size', default=1, type = int, help = "Test with a <batch_size> number of samples each test iteration.")
parser.add_argument('-c','--checkpoint_iters', type=int, default=1000, help='Save checkpoint (i.e. weights & optimizer) every <checkpoint_iters> iterations.')
parser.add_argument('-t','--test_iters', type=int, default=1000, help='Test model every <test_iters> iterations.')
parser.add_argument('--train_duration', type=int, default = sys.maxsize, help='Train duration counted in iteration.')
# paths
parser.add_argument('--train_path', type = str, help = "Path to the training folder containing the files")
parser.add_argument('--test_path', type = str, help = "Path to the testing folder containing the files")
weight_group = parser.add_mutually_exclusive_group()
weight_group.add_argument('--weights', type = str, help = "Path to weights file (for fine-tuning or continuing training)")
parser.add_argument('--opt_state', type = str, help = "Path to stored optimizer state file (for continuing training)")
# data paths
parser.add_argument('--corbs_path', type=str, help = "Path to CORBS background dataset")
parser.add_argument('--vcl_path', type = str, help = "Path to VCL background dataset")
parser.add_argument('--intnet_path', type = str, help = 'Path to interior net background dataset')
parser.add_argument('--valset_path', type = str, help = 'Path to validation set')
parser.add_argument('--real_data_path', type=str, help= 'Path to real-data set')
parser.add_argument('--test_data_path', type=str, help= 'Path to rendered data for test')
#parser.add_argument("--device_list",nargs="*", type=str, default = ["M72e","M72h","M72i","M72j","M11"], help = "List of device names to be loaded")
parser.add_argument("--device_list",nargs="*", type=str, default = ["M11"], help = "List of device names to be loaded")
#model
parser.add_argument('-hl', '--heat_weight', type = float, default=0.0, help='Weight/contribution of heatmap loss ot the total loss')
parser.add_argument('-sl', '--seg_weight', type = float, default=1.0, help='Weight/contribution of segmentation loss ot the total loss')
parser.add_argument('-cl', '--cor_weight', type = float, default=0.0, help='Weight/contribution of soft correspondences loss')
parser.add_argument('--soft_cor', type = str2bool, default=False, help='Flag soft correspondences loss using SVD')
parser.add_argument('-snl', '--surface_weight', type = float, default=0.0, help='Weight/contribution of surface normals loss ot the total loss')
parser.add_argument('-nc','--nclasses', type = int, default=25, help = "Number of classes.")
parser.add_argument('--model_name', default="default", type=str, help='Model selection argument.')
parser.add_argument('--saved_params_path', type=str, help='Path where a trained model has been stored')
parser.add_argument('--ndf', type=int, default=8, help='Constant values used to define input and output channels at nn layers')
parser.add_argument('--upsample_type', default="nearest", type=str, help='Model selection argument.')
# optimization
parser.add_argument('-o','--optimizer', type=str, default="adam", help='The optimizer that will be used during training.')
parser.add_argument('-l','--lr', type=float, default=0.0002, help='Optimization Learning Rate.')
parser.add_argument('-m','--momentum', type=float, default=0.9, help='Optimization Momentum.')
parser.add_argument('--momentum2', type=float, default=0.999, help='Optimization Second Momentum (optional, only used by some optimizers).')
parser.add_argument('--epsilon', type=float, default=1e-8, help='Optimization Epsilon (optional, only used by some optimizers).')
parser.add_argument('--weight_decay', type=float, default=0.0005, help='Optimization Weight Decay.')
weight_group.add_argument('--weight_init', type=str, default="xavier", help='Weight initialization method.')
# hardware
parser.add_argument('-g','--gpu', type=str, default='0', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.')
parser.add_argument('--num_workers' ,type= int, default = 3, help='Number of workers to use for dataload')
# other
parser.add_argument('-n','--name', type=str, default='default_name', help='The name of this train/test. Used when storing information.')
parser.add_argument("--depth_thres", type=float, default=5.0, help = "Depth threshold - depth clipping.")
parser.add_argument("--train_data_type", type=str, help = "Setting enabling type of training data (real, synthetic)", choices=["real", "synthetic", "both"] , default="synthetic")
#dataset parameters
parser.add_argument("--rmin", type=float, default=1.5, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
parser.add_argument("--rmax", type=float, default=2.5, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
parser.add_argument("--zmin", type=float, default=-0.35, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
parser.add_argument("--zmax", type=float, default=1, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
parser.add_argument("--lookat", type=float, default=0.5, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
parser.add_argument("--upvecvar", type=float, default=10.0, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
parser.add_argument("--samples_per_dataset", type=int, default=50000, help = "Number of samples per dataset.")
parser.add_argument("--dr", type=float, default=None, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
parser.add_argument("--dz", type=float, default=None, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
parser.add_argument("--dphi", type=float, default=None, help = "Synthetic dataset params, for more info check PoseSamplerParams.")
#visualization
parser.add_argument('-d','--disp_iters', type=int, default=10, help='Log training progress (i.e. loss etc.) on console every <disp_iters> iterations.')
parser.add_argument('--visdom', type=str, nargs='?', default=None, const="195.251.117.98", help = "Visdom server IP (port defaults to 8097)")
parser.add_argument('--visdom_iters', type=int, default=10, help = "Iteration interval that results will be reported at the visdom server for visualization.")
#validation
parser.add_argument('--confidence_threshold', type = float, default = 0.75, help ='confidence probability threshold to reject uncofident predictions')
return parser.parse_known_args(args)
if __name__ == "__main__":
args, uknown = parse_arguments(sys.argv)
#create and init device
print("{} | Torch Version: {}".format(datetime.datetime.now(), torch.__version__))
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
device = torch.device("cuda:{}" .format(gpus[0]) if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0 else "cpu")
print("Training {0} for {1} epochs using a batch size of {2} on {3}".format(args.name, args.epochs, args.batch_size, device))
visualizer =src.utils.visualization. NullVisualizer() if args.visdom is None\
else src.utils.visualization.VisdomVisualizer(args.name, args.visdom, count=4)
if args.visdom is None:
args.visdom_iters = 0
#create model parameters
model_params = {
'width': 320,
'height': 180,
'ndf': args.ndf,
'upsample_type': args.upsample_type,
'nclasses': args.nclasses
}
#create & init model || load pretrained model
if args.saved_params_path is None:
model = models.get_UNet_model(args.model_name, model_params).to(device)
other.initialize_weights(model, args.weights if args.weights is not None else args.weight_init)
model_name = args.model_name
start_epoch = 0
iterations = 0
else:
checkpoint = torch.load(args.saved_params_path)
model = models.get_UNet_model(checkpoint['model_name'], model_params)
print("Loading previously saved model from {}".format(args.saved_params_path))
model.load_state_dict(checkpoint['state_dict'])
model = model.to(device)
model_name = checkpoint['model_name']
start_epoch = checkpoint['epoch']
iterations = checkpoint['iterations']
#create and init optimizer
opt_params = other.OptimizerParameters(learning_rate=args.lr, momentum=args.momentum, \
momentum2=args.momentum2, epsilon=args.epsilon)
optimizer = other.get_optimizer(args.optimizer, model.parameters(), opt_params)
if args.saved_params_path is not None:
print("Loading previously saved optimizer state from {}".format(args.saved_params_path))
optimizer.load_state_dict(checkpoint["optim_dict"])
#create data importer
sample_count_per_subdataset = args.samples_per_dataset
path_to_corbs_background_dataset = args.corbs_path
path_to_vcl_background_dataset = args.vcl_path
path_to_intnet_background_dataset = args.intnet_path
# box flags
box_flags_map = {
17 : BoxRenderFlags.LABEL_TOP_AND_BOTTOM_AS_BACKGROUND,
21 : BoxRenderFlags.LABEL_DOWN_AS_BACKGROUND,
25 : None
}
rnd_seed = 1234
random.seed(rnd_seed) # this will generate fixed seeds of subcomponents that create the datasets (factory uses random.random() to initialize seeds)
torch.random.manual_seed(rnd_seed)
dataset_type = dataset_factory.BoxPoseDatasetType.VERTICAL_2
# create dataset of 16:9 resolution based on RS2
if args.train_data_type in ["synthetic","both"]:
if args.dr is None and args.dz is None and args.dphi is None:
params = pose_sampler.PoseSamplerParams(
num_positions = sample_count_per_subdataset,
rmin = args.rmin,
rmax = args.rmax,
zmin = args.zmin,
zmax = args.zmax,
look_at_radius = args.lookat,
up_vector_variance=args.upvecvar
)
dsiterators = dataset_factory.create_rs2_16_9_box_pose_dataset(path_to_corbs_background_dataset,path_to_vcl_background_dataset,
path_to_intnet_background_dataset,
pose_params = params,
box_render_flags=box_flags_map[args.nclasses],
dataset_type = dataset_type,
out_resolution_width = model_params["width"], out_resolution_height = model_params["height"])
elif args.dr is not None and args.dz is not None and args.dphi is not None:
params = pose_sampler.PoseSamplerParamsGrid(
rmin = args.rmin,
rmax = args.rmax,
dr = args.dr,
zmin = args.zmin,
zmax = args.zmax,
dz = args.dz,
look_at_radius = args.lookat,
up_vector_variance=args.upvecvar,
dphi = args.dphi
)
dsiterators = dataset_factory.create_rs2_16_9_grid_box_pose_dataset(path_to_corbs_background_dataset,path_to_vcl_background_dataset,
path_to_intnet_background_dataset,
pose_params = params,
box_render_flags=box_flags_map[args.nclasses],
dataset_type = dataset_type,
out_resolution_width = model_params["width"], out_resolution_height = model_params["height"])
else:
raise Exception("Not valid")
else:
dsiterators = list()
########
# real data
if args.train_data_type in ["real","both"]:
real_data_params = real_dataloader.DataLoaderParams(\
root_path=args.real_data_path, device_list=args.device_list,\
device_repository_path=args.real_data_path, depth_threshold=args.depth_thres, decimation_scale = 4)
real_data_iterator = real_dataloader.DataLoad(real_data_params)
dsiterators.append(real_data_iterator)
dsiterator = torch.utils.data.ConcatDataset(dsiterators)
#end of real data
num_workers = args.num_workers
dataset = torch.utils.data.DataLoader(dsiterator,\
batch_size = args.batch_size, shuffle=True,\
num_workers = num_workers, pin_memory=False)
##### TODO VALIDATION DATALOADER HERE #####
if args.valset_path is not None:
vdsiterator_params = depthmap_val_dataset.DepthmapDatasetParams(args.valset_path, 0.001, 4)
vdsiterator = depthmap_val_dataset.DepthmapDataset(vdsiterator_params)
vdataset = torch.utils.data.DataLoader(vdsiterator,\
batch_size = args.batch_size, shuffle=True,\
num_workers = 0, pin_memory=False)
if args.test_data_path is not None:
test_iterator_params = depthmap_val_dataset.DepthmapDatasetParams(
args.test_data_path, 0.001,
max_len = None,
number_of_classes = args.nclasses)
test_iterator = depthmap_val_dataset.DepthmapDataset(test_iterator_params)
test_dataset = torch.utils.data.DataLoader(test_iterator,\
batch_size = args.batch_size, shuffle=False,\
num_workers = args.num_workers, pin_memory=True)
###########################################
if args.nclasses not in (17,21,25):
raise Exception("Wrong class number argument ({})".format(args.nclasses))
else:
class_w = torch.ones((args.nclasses)).float()
seg_criterion_1 = nn.NLLLoss2d(weight=class_w, reduction='mean').to(device)
L2_criterion = nn.MSELoss().to(device)
L2_norm_criterion = nn.MSELoss().to(device)
#logging init
batch_seg_loss = other.AverageMeter()
batch_heat_loss = other.AverageMeter()
batch_surface_loss = other.AverageMeter()
batch_total_loss = other.AverageMeter()
batch_soft_cor_loss = other.AverageMeter()
batch_soft_cor_loss_unlabeled = other.AverageMeter()
frame_index = 0
for epoch in range(start_epoch, args.epochs):
#init
seg_loss = 0.0
heat_loss = 0.0
surface_loss = 0.0
total_loss = 0.0
model.train()
for batch_id, batch in enumerate(dataset):
if iterations > args.train_duration:
epoch = args.epochs + 1
break
start = time.perf_counter()
optimizer.zero_grad()
batch_d = batch['depth']
#forward pass
if model_name == 'with_normals':
activs, heat_pred, out, normals = model(batch_d.to(device))
elif model_name == 'heatmap':
activs, heat_pred, out = model(batch_d.to(device))
else:
activs, out = model(batch_d.to(device))
real_batch, synth_batch, real_ids, synth_ids = utils.train_utils.split_batch(batch)
if real_batch:
out_real = out[real_ids]
#prepare target
if synth_batch:
labels = synth_batch['labels'].float()
target = labels
out_synth = out[synth_ids]
#prepare heatmap target
seg_loss = seg_criterion_1(out_synth, target.squeeze(1).long().to(device))
total_loss = seg_loss
if synth_batch is not None:
soft_cor_loss = src.supervision.losses.soft_correspondences_loss(
torch.exp(out_synth),
synth_batch,
confidence = 0.0,
criterion = L2_criterion,
device = device,
SVD=args.soft_cor
)
if soft_cor_loss is not None:
total_loss += args.cor_weight * soft_cor_loss
#backprop + grad update
total_loss.backward()
optimizer.step()
if synth_batch:
batch_seg_loss.update(seg_loss.cpu().detach())
if args.cor_weight != 0.0 and synth_batch is not None and soft_cor_loss is not None:
batch_soft_cor_loss.update(soft_cor_loss.cpu().detach())
if model_name == 'heatmap':
batch_heat_loss.update(heat_loss.cpu().detach())
if model_name == 'with_normals':
batch_heat_loss.update(heat_loss.cpu().detach())
batch_surface_loss.update(surface_loss.cpu().detach())
batch_total_loss.update(total_loss.cpu().detach())
if real_batch is not None:
batch_soft_cor_loss_unlabeled.update(soft_cor_loss_unlabeled.cpu().detach())
iterations += args.batch_size
print("Epoch: {}, iteration: {}, learning rate: {}, batch time: {}, Total Loss: {}, Seg Loss: {}, Heat Loss: {}, Surface Loss: {}\n"\
.format(epoch, iterations, optimizer.param_groups[0]['lr'], time.perf_counter() - start, batch_total_loss.avg.item(), batch_seg_loss.avg.item(), batch_heat_loss.avg.item(), batch_surface_loss.avg.item()))
#visualization - Visdom
if ((iterations) % args.disp_iters) == 0:
visualizer.append_loss(epoch + 1, iterations, batch_total_loss.avg, "total_loss")
if real_batch is not None:
visualizer.append_loss(epoch + 1, iterations, batch_soft_cor_loss_unlabeled.avg, "soft_cor_loss_unlabeled")
visualizer.append_loss(epoch + 1, iterations, batch_seg_loss.avg, "segmentation_loss")
if args.cor_weight != 0.0:
visualizer.append_loss(epoch + 1, iterations, batch_soft_cor_loss.avg, "soft_correspondences_loss")
if model_name == 'heatmap':
visualizer.append_loss(epoch + 1, iterations, batch_heat_loss.avg, "heatmap_loss")
if model_name == 'with_normals':
visualizer.append_loss(epoch + 1, iterations, batch_heat_loss.avg, "heatmap_loss")
visualizer.append_loss(epoch + 1, iterations, batch_surface_loss.avg, "surface_loss")
if (iterations % args.visdom_iters) == 0:
for bidx in range(np.min([batch_d.size()[0], 5])):
visualizer.show_seg_map(out[bidx].argmax(0), 'segmentation prediction' + str(bidx))
visualizer.show_seg_map(batch_d[bidx], 'input depth' + str(bidx))
if model_name == 'heatmap':
visualizer.show_seg_map(heat_gt[bidx], 'heatmap gt' + str(bidx))
visualizer.show_seg_map(heat_pred[bidx], 'heatmap prediction' + str(bidx))
if model_name == 'with_normals':
visualizer.show_seg_map(heat_pred[bidx], 'heatmap prediction' + str(bidx))
visualizer.show_seg_map(heat_gt[bidx], 'heatmap gt' + str(bidx))
visualizer.show_normals(normals[bidx], 'normals prediction' + str(bidx))
visualizer.show_normals(normals_target[bidx].float(), 'normals gt' + str(bidx))
#validation
if args.valset_path is not None:
with torch.no_grad():
model.eval()
confidence_threshold = args.confidence_threshold
frame_index = 0
total_iou = 0
for vbatch_id, vbatch in enumerate(vdataset):
#resize input
vbatch_d = vbatch['depth']
#prepare target
vlabels = vbatch['labels'].float()
activs, out = model(vbatch_d.to(device))
batch_size = vbatch_d.shape[0]
confidence_t, labels_pred_t = out.max(dim = 1, keepdim = True)
confidence_t = torch.exp(confidence_t) # convert log probability to probability
labels_pred_t [confidence_t < confidence_threshold] = 0 # uncertain classs
frame_index += batch_size
sample_iou, mask = metrics.jaccard(labels_pred_t.cpu().float(), vlabels, args.nclasses)
total_iou = torch.sum(sample_iou*mask.float(), dim = -1) / mask.sum(dim = -1).float()
print("Epoch: {}, Average IoU: {}\n"\
.format(epoch, total_iou.mean()))
visualizer.append_loss(epoch + 1, iterations, total_iou.mean(), "average IoU", mode='val')
if args.test_data_path is not None:
total_iou = 0
frame_index = 0
bar = tqdm(total = test_iterator.__len__())
with torch.no_grad():
model.eval()
confidence_threshold = args.confidence_threshold
for batch_id, batch in enumerate(test_dataset):
vbatch_d = batch['depth']
#prepare target
vlabels = batch['labels'].float()
activs, out = model(vbatch_d.to(device))
batch_size = vbatch_d.shape[0]
confidence_t, labels_pred_t = out[index].max(dim = 1, keepdim = True)
confidence_t = torch.exp(confidence_t) # convert log probability to probability
labels_pred_t [confidence_t < confidence_threshold] = 0 # uncertain classs
frame_index += batch_size
sample_iou, mask = metrics.jaccard(labels_pred_t.cpu().float(), vlabels, args.nclasses)
total_iou = torch.sum(sample_iou*mask.float(), dim = -1) / mask.sum(dim = -1).float()
print("Epoch: {}, Test Average IoU: {}\n"\
.format(epoch, total_iou.mean()))
visualizer.append_loss(epoch + 1, iterations, total_iou.mean(), "average test IoU", mode='val')
#save model params
src.utils.save_checkpoint({
'nclasses' : args.nclasses,
'ndf' : args.ndf,
'epoch': epoch,
'iterations': iterations,
'batch_size': args.batch_size,
'model_name': model_name,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
}, epoch, name = args.name)
torch.cuda.empty_cache()
if epoch > args.epochs:
break