-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval.py
304 lines (246 loc) · 8.99 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""
@author: Wendong Xu
@contact: [email protected]
@file: eval.py
@time: 2019-11-02 20:11
@desc:
"""
# Use CUDA by default.
import argparse
import os
import torch
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import torch.multiprocessing as mp
import network
from torch.utils.data import DataLoader, Subset
from tools.statistics import count_model_param
from utils.safe_loader import safe_loader
from utils.file_ops import check_dir_exists
from misc.metrics.average_meter import AverageMeter
from misc.metrics.voc_cityscapes_metric import VocCityscapesMetric
from misc import get_logger, config
from dataset import cityscapes
def get_logger_and_parser():
parser = argparse.ArgumentParser(description='config')
parser.add_argument('--config', type=str, default='config/cityscapes_pspnet.yaml', help='Configuration file to use')
parser.add_argument('--num_of_gpus', type=int, default=0)
parser.add_argument('opts', help='', default=None, nargs=argparse.REMAINDER)
args = parser.parse_args()
assert args.config is not None
cfg = config.load_cfg_from_cfg_file(args.config)
if args.opts is not None:
cfg = config.merge_cfg_from_list(cfg, args.opts)
args_dict = dict()
for arg in vars(args):
args_dict[arg] = getattr(args, arg)
cfg.update(args_dict)
run_dir = os.path.join('runs',
os.path.basename(args.config)[:-5], cfg['exp_name'])
check_dir_exists(run_dir)
run_id = str(int(time.time()))
logger = get_logger(run_dir, run_id, 'val')
logger.info('RUNDIR: {}'.format(run_dir))
return logger, cfg, run_dir
def get_dataset(cfg):
# TODO(xwd): Adaptive normalization by some large image.
# E.g. In medical image processing, WSI image is very large and different to ordinary images.
eval_dataset = cityscapes.Cityscapes(
cfg['data_path'], split='val', transform=None)
return eval_dataset
def eval_each(model, image, mean, std=None, flip=True):
image = torch.from_numpy(image.transpose((2, 0, 1))).float()
if std is None:
for t, m in zip(image, mean):
t.sub_(m)
else:
for t, m, s in zip(image, mean, std):
t.sub_(m).div_(s)
image = image.unsqueeze(0).cuda()
if flip:
image = torch.cat([image, image.flip(3)], 0)
with torch.no_grad():
output = model(image)
_, _, h_i, w_i = image.shape
_, _, h_o, w_o = output.shape
if (h_o != h_i) or (w_o != w_i):
if h_o % 8 == 0:
align_corners = False
elif (h_o - 1) % 8 == 0:
align_corners = True
output = F.interpolate(
output, (h_i, w_i), mode='bilinear', align_corners=align_corners)
output = F.softmax(output, dim=1)
if flip:
output = (output[0] + output[1].flip(2)) / 2
else:
output = output[0]
output = output.data.cpu().numpy()
output = output.transpose(1, 2, 0)
return output
def eval_in_scale(model, image, classes, crop_h, crop_w, h, w, mean, std=None, stride_rate=2 / 3):
ori_h, ori_w, _ = image.shape
pad_h = max(crop_h - ori_h, 0)
pad_w = max(crop_w - ori_w, 0)
pad_h_half = int(pad_h / 2)
pad_w_half = int(pad_w / 2)
if pad_h > 0 or pad_w > 0:
image = cv2.copyMakeBorder(
image,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=mean)
if len(image.shape) == 2:
# Unsqueeze for gray image.
image = np.expand_dims(image, 2)
new_h, new_w, _ = image.shape
stride_h = int(np.ceil(crop_h * stride_rate))
stride_w = int(np.ceil(crop_w * stride_rate))
grid_h = int(np.ceil(float(new_h - crop_h) / stride_h) + 1)
grid_w = int(np.ceil(float(new_w - crop_w) / stride_w) + 1)
prediction_crop = np.zeros((new_h, new_w, classes), dtype=float)
count_crop = np.zeros((new_h, new_w), dtype=float)
for index_h in range(0, grid_h):
for index_w in range(0, grid_w):
s_h = index_h * stride_h
e_h = min(s_h + crop_h, new_h)
s_h = e_h - crop_h
s_w = index_w * stride_w
e_w = min(s_w + crop_w, new_w)
s_w = e_w - crop_w
image_crop = image[s_h:e_h, s_w:e_w].copy()
count_crop[s_h:e_h, s_w:e_w] += 1
prediction_crop[s_h:e_h, s_w:e_w, :] += eval_each(model, image_crop, mean,
std)
prediction_crop /= np.expand_dims(count_crop, 2)
prediction_crop = prediction_crop[pad_h_half:pad_h_half +
ori_h, pad_w_half:pad_w_half + ori_w]
prediction = cv2.resize(
prediction_crop, (w, h), interpolation=cv2.INTER_LINEAR)
return prediction
def eval_single_gpu(worker, cfg, logger, eval_dataset, results_queue):
os.environ["CUDA_VISIBLE_DEVICES"] = str(worker)
value_scale = 255
mean = [0.485, 0.456, 0.406]
mean = [item * value_scale for item in mean]
std = [0.229, 0.224, 0.225]
std = [item * value_scale for item in std]
ruler = VocCityscapesMetric()
data_time = AverageMeter()
batch_time = AverageMeter()
end = time.time()
# Load dataset
data_size = len(eval_dataset)
eval_loader = DataLoader(eval_dataset, batch_size=2, shuffle=False, num_workers=4, pin_memory=True, drop_last=False)
# Get model checkpoint.
checkpoint = torch.load(cfg['model_path'])
# Load model.
model = network.get_model()
if worker == 0:
logger.info(model)
model = torch.nn.DataParallel(model).cuda()
model.load_state_dict(
safe_loader(
checkpoint['state_dict'],
use_model='multi'))
logger.info(
f'Worker[{worker}]: Segmentation Network Total Params number: {count_model_param(model) / 1E6}M'
)
model.eval()
process_count = 0
for _, (image, label) in enumerate(eval_loader):
assert image.shape[0] == label.shape[0]
data_time.update(time.time() - end)
for j in range(image.shape[0]):
cur_image = image[j].numpy()
cur_label = label[j].numpy()
h, w, _ = cur_image.shape
prediction = np.zeros((h, w, cfg['classes']), dtype=float)
for scale in cfg['scales']:
long_size = round(scale * cfg['base_size'])
new_h = long_size
new_w = long_size
if h > w:
new_w = round(long_size / float(h) * w)
else:
new_h = round(long_size / float(w) * h)
image_scale = cv2.resize(
cur_image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
if len(image_scale.shape) == 2:
# Unsqueeze for gray image.
image_scale = np.expand_dims(image_scale, 2)
prediction += eval_in_scale(model, image_scale, cfg['classes'],
cfg['test_h'], cfg['test_w'], h, w, mean,
std)
prediction /= len(cfg['scales'])
prediction = np.argmax(prediction, axis=2)
batch_time.update(time.time() - end)
end = time.time()
process_count += 1
if process_count % 10 == 0 or process_count == data_size:
logger.info('[Worker{}] Test: [{}/{}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}).'.format(
worker,
process_count,
data_size,
data_time=data_time,
batch_time=batch_time))
if cur_label is not None:
hist_tmp, labeled_tmp, correct_tmp = ruler.hist_info(
cfg['classes'], prediction, cur_label)
results_queue.put({
'hist': hist_tmp,
'labeled': labeled_tmp,
'correct': correct_tmp
})
def main():
logger, cfg, run_dir = get_logger_and_parser()
os.environ["CUDA_VISIBLE_DEVICES"] = '-1' if cfg['num_of_gpus'] <= 0 else ','.join(str(x) for x in range(cfg['num_of_gpus']))
cfg['multi_gpu'] = True if cfg['num_of_gpus'] > 1 else False
model_path = os.path.join(run_dir, 'model')
check_dir_exists(model_path)
# Get dataset.
eval_dataset = get_dataset(cfg)
eval_datasize = len(eval_dataset)
results_queue = mp.Queue(eval_datasize)
if cfg['num_of_gpus'] == 1:
eval_single_gpu(0, cfg, logger, eval_dataset, results_queue)
else:
# Multi-GPUs processing.
stride = int(np.ceil(eval_datasize / cfg['num_of_gpus']))
dataset_idx = list(range(eval_datasize))
procs_list = []
for n in range(cfg['num_of_gpus']):
e_record = min((n + 1) * stride, eval_datasize)
idx = dataset_idx[n * stride:e_record]
p = mp.Process(target=eval_single_gpu, args=(n, cfg, logger, Subset(eval_dataset, idx),
results_queue,))
procs_list.append(p)
p.start()
if cfg['split'] != 'test':
eval_results = []
for _ in range(eval_datasize):
t = results_queue.get()
eval_results.append(t)
logger.info('Results accumulated.')
ruler = VocCityscapesMetric()
ruler(eval_results, cfg['classes'])
if ruler.calculated:
logger.info(ruler)
if cfg['num_of_gpus'] > 1:
for p in procs_list:
p.join()
if __name__ == '__main__':
try:
mp.set_start_method('spawn')
except RuntimeError:
pass
main()