forked from jdupuy/whitecaps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
atmosphere.glsl
516 lines (434 loc) · 17.9 KB
/
atmosphere.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/**
* Precomputed Atmospheric Scattering
* Copyright (c) 2008 INRIA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* Author: Eric Bruneton
*/
const float SUN_INTENSITY = 100.0;
const vec3 earthPos = vec3(0.0, 0.0, 6360010.0);
// ----------------------------------------------------------------------------
// PHYSICAL MODEL PARAMETERS
// ----------------------------------------------------------------------------
const float SCALE = 1000.0;
const float Rg = 6360.0 * SCALE;
const float Rt = 6420.0 * SCALE;
const float RL = 6421.0 * SCALE;
const float AVERAGE_GROUND_REFLECTANCE = 0.1;
// Rayleigh
const float HR = 8.0 * SCALE;
const vec3 betaR = vec3(5.8e-3, 1.35e-2, 3.31e-2) / SCALE;
// Mie
// DEFAULT
const float HM = 1.2 * SCALE;
const vec3 betaMSca = vec3(4e-3) / SCALE;
const vec3 betaMEx = betaMSca / 0.9;
const float mieG = 0.8;
// CLEAR SKY
/*const float HM = 1.2 * SCALE;
const vec3 betaMSca = vec3(20e-3) / SCALE;
const vec3 betaMEx = betaMSca / 0.9;
const float mieG = 0.76;*/
// PARTLY CLOUDY
/*const float HM = 3.0 * SCALE;
const vec3 betaMSca = vec3(3e-3) / SCALE;
const vec3 betaMEx = betaMSca / 0.9;
const float mieG = 0.65;*/
const float g = 9.81;
const float M_PI = 3.141592657;
// ----------------------------------------------------------------------------
// NUMERICAL INTEGRATION PARAMETERS
// ----------------------------------------------------------------------------
const int TRANSMITTANCE_INTEGRAL_SAMPLES = 500;
const int INSCATTER_INTEGRAL_SAMPLES = 50;
const int IRRADIANCE_INTEGRAL_SAMPLES = 32;
const int INSCATTER_SPHERICAL_INTEGRAL_SAMPLES = 16;
// ----------------------------------------------------------------------------
// PARAMETERIZATION OPTIONS
// ----------------------------------------------------------------------------
const int TRANSMITTANCE_W = 256;
const int TRANSMITTANCE_H = 64;
const int SKY_W = 64;
const int SKY_H = 16;
const int RES_R = 32;
const int RES_MU = 128;
const int RES_MU_S = 32;
const int RES_NU = 8;
#define TRANSMITTANCE_NON_LINEAR
#define INSCATTER_NON_LINEAR
// ----------------------------------------------------------------------------
// PARAMETERIZATION FUNCTIONS
// ----------------------------------------------------------------------------
#ifdef _FRAGMENT_
uniform sampler2D transmittanceSampler;
uniform sampler2D skyIrradianceSampler;
uniform sampler3D inscatterSampler;
vec2 getTransmittanceUV(float r, float mu) {
float uR, uMu;
#ifdef TRANSMITTANCE_NON_LINEAR
uR = sqrt((r - Rg) / (Rt - Rg));
uMu = atan((mu + 0.15) / (1.0 + 0.15) * tan(1.5)) / 1.5;
#else
uR = (r - Rg) / (Rt - Rg);
uMu = (mu + 0.15) / (1.0 + 0.15);
#endif
return vec2(uMu, uR);
}
void getTransmittanceRMu(out float r, out float muS) {
r = gl_FragCoord.y / float(TRANSMITTANCE_H);
muS = gl_FragCoord.x / float(TRANSMITTANCE_W);
#ifdef TRANSMITTANCE_NON_LINEAR
r = Rg + (r * r) * (Rt - Rg);
muS = -0.15 + tan(1.5 * muS) / tan(1.5) * (1.0 + 0.15);
#else
r = Rg + r * (Rt - Rg);
muS = -0.15 + muS * (1.0 + 0.15);
#endif
}
vec2 getIrradianceUV(float r, float muS) {
float uR = (r - Rg) / (Rt - Rg);
float uMuS = (muS + 0.2) / (1.0 + 0.2);
return vec2(uMuS, uR);
}
void getIrradianceRMuS(out float r, out float muS) {
r = Rg + (gl_FragCoord.y - 0.5) / (float(SKY_H) - 1.0) * (Rt - Rg);
muS = -0.2 + (gl_FragCoord.x - 0.5) / (float(SKY_W) - 1.0) * (1.0 + 0.2);
}
vec4 texture4D(sampler3D table, float r, float mu, float muS, float nu)
{
float H = sqrt(Rt * Rt - Rg * Rg);
float rho = sqrt(r * r - Rg * Rg);
#ifdef INSCATTER_NON_LINEAR
float rmu = r * mu;
float delta = rmu * rmu - r * r + Rg * Rg;
vec4 cst = rmu < 0.0 && delta > 0.0 ? vec4(1.0, 0.0, 0.0, 0.5 - 0.5 / float(RES_MU)) : vec4(-1.0, H * H, H, 0.5 + 0.5 / float(RES_MU));
float uR = 0.5 / float(RES_R) + rho / H * (1.0 - 1.0 / float(RES_R));
float uMu = cst.w + (rmu * cst.x + sqrt(delta + cst.y)) / (rho + cst.z) * (0.5 - 1.0 / float(RES_MU));
// paper formula
//float uMuS = 0.5 / float(RES_MU_S) + max((1.0 - exp(-3.0 * muS - 0.6)) / (1.0 - exp(-3.6)), 0.0) * (1.0 - 1.0 / float(RES_MU_S));
// better formula
float uMuS = 0.5 / float(RES_MU_S) + (atan(max(muS, -0.1975) * tan(1.26 * 1.1)) / 1.1 + (1.0 - 0.26)) * 0.5 * (1.0 - 1.0 / float(RES_MU_S));
#else
float uR = 0.5 / float(RES_R) + rho / H * (1.0 - 1.0 / float(RES_R));
float uMu = 0.5 / float(RES_MU) + (mu + 1.0) / 2.0 * (1.0 - 1.0 / float(RES_MU));
float uMuS = 0.5 / float(RES_MU_S) + max(muS + 0.2, 0.0) / 1.2 * (1.0 - 1.0 / float(RES_MU_S));
#endif
float lerp = (nu + 1.0) / 2.0 * (float(RES_NU) - 1.0);
float uNu = floor(lerp);
lerp = lerp - uNu;
return texture3D(table, vec3((uNu + uMuS) / float(RES_NU), uMu, uR)) * (1.0 - lerp) +
texture3D(table, vec3((uNu + uMuS + 1.0) / float(RES_NU), uMu, uR)) * lerp;
}
void getMuMuSNu(float r, vec4 dhdH, out float mu, out float muS, out float nu) {
float x = gl_FragCoord.x - 0.5;
float y = gl_FragCoord.y - 0.5;
#ifdef INSCATTER_NON_LINEAR
if (y < float(RES_MU) / 2.0) {
float d = 1.0 - y / (float(RES_MU) / 2.0 - 1.0);
d = min(max(dhdH.z, d * dhdH.w), dhdH.w * 0.999);
mu = (Rg * Rg - r * r - d * d) / (2.0 * r * d);
mu = min(mu, -sqrt(1.0 - (Rg / r) * (Rg / r)) - 0.001);
} else {
float d = (y - float(RES_MU) / 2.0) / (float(RES_MU) / 2.0 - 1.0);
d = min(max(dhdH.x, d * dhdH.y), dhdH.y * 0.999);
mu = (Rt * Rt - r * r - d * d) / (2.0 * r * d);
}
muS = mod(x, float(RES_MU_S)) / (float(RES_MU_S) - 1.0);
// paper formula
//muS = -(0.6 + log(1.0 - muS * (1.0 - exp(-3.6)))) / 3.0;
// better formula
muS = tan((2.0 * muS - 1.0 + 0.26) * 1.1) / tan(1.26 * 1.1);
nu = -1.0 + floor(x / float(RES_MU_S)) / (float(RES_NU) - 1.0) * 2.0;
#else
mu = -1.0 + 2.0 * y / (float(RES_MU) - 1.0);
muS = mod(x, float(RES_MU_S)) / (float(RES_MU_S) - 1.0);
muS = -0.2 + muS * 1.2;
nu = -1.0 + floor(x / float(RES_MU_S)) / (float(RES_NU) - 1.0) * 2.0;
#endif
}
// ----------------------------------------------------------------------------
// UTILITY FUNCTIONS
// ----------------------------------------------------------------------------
// nearest intersection of ray r,mu with ground or top atmosphere boundary
// mu=cos(ray zenith angle at ray origin)
float limit(float r, float mu) {
float dout = -r * mu + sqrt(r * r * (mu * mu - 1.0) + RL * RL);
float delta2 = r * r * (mu * mu - 1.0) + Rg * Rg;
if (delta2 >= 0.0) {
float din = -r * mu - sqrt(delta2);
if (din >= 0.0) {
dout = min(dout, din);
}
}
return dout;
}
// optical depth for ray (r,mu) of length d, using analytic formula
// (mu=cos(view zenith angle)), intersections with ground ignored
// H=height scale of exponential density function
float opticalDepth(float H, float r, float mu, float d) {
float a = sqrt((0.5/H)*r);
vec2 a01 = a*vec2(mu, mu + d / r);
vec2 a01s = sign(a01);
vec2 a01sq = a01*a01;
float x = a01s.y > a01s.x ? exp(a01sq.x) : 0.0;
vec2 y = a01s / (2.3193*abs(a01) + sqrt(1.52*a01sq + 4.0)) * vec2(1.0, exp(-d/H*(d/(2.0*r)+mu)));
return sqrt((6.2831*H)*r) * exp((Rg-r)/H) * (x + dot(y, vec2(1.0, -1.0)));
}
// transmittance(=transparency) of atmosphere for infinite ray (r,mu)
// (mu=cos(view zenith angle)), intersections with ground ignored
vec3 transmittance(float r, float mu) {
vec2 uv = getTransmittanceUV(r, mu);
return texture2D(transmittanceSampler, uv).rgb;
}
// transmittance(=transparency) of atmosphere for ray (r,mu) of length d
// (mu=cos(view zenith angle)), intersections with ground ignored
// uses analytic formula instead of transmittance texture
vec3 analyticTransmittance(float r, float mu, float d) {
return exp(- betaR * opticalDepth(HR, r, mu, d) - betaMEx * opticalDepth(HM, r, mu, d));
}
// transmittance(=transparency) of atmosphere for infinite ray (r,mu)
// (mu=cos(view zenith angle)), or zero if ray intersects ground
vec3 transmittanceWithShadow(float r, float mu) {
return mu < -sqrt(1.0 - (Rg / r) * (Rg / r)) ? vec3(0.0) : transmittance(r, mu);
}
// transmittance(=transparency) of atmosphere between x and x0
// assume segment x,x0 not intersecting ground
// r=||x||, mu=cos(zenith angle of [x,x0) ray at x), v=unit direction vector of [x,x0) ray
vec3 transmittance(float r, float mu, vec3 v, vec3 x0) {
vec3 result;
float r1 = length(x0);
float mu1 = dot(x0, v) / r;
if (mu > 0.0) {
result = min(transmittance(r, mu) / transmittance(r1, mu1), 1.0);
} else {
result = min(transmittance(r1, -mu1) / transmittance(r, -mu), 1.0);
}
return result;
}
// transmittance(=transparency) of atmosphere between x and x0
// assume segment x,x0 not intersecting ground
// d = distance between x and x0, mu=cos(zenith angle of [x,x0) ray at x)
vec3 transmittance(float r, float mu, float d) {
vec3 result;
float r1 = sqrt(r * r + d * d + 2.0 * r * mu * d);
float mu1 = (r * mu + d) / r1;
if (mu > 0.0) {
result = min(transmittance(r, mu) / transmittance(r1, mu1), 1.0);
} else {
result = min(transmittance(r1, -mu1) / transmittance(r, -mu), 1.0);
}
return result;
}
vec3 irradiance(sampler2D sampler, float r, float muS) {
vec2 uv = getIrradianceUV(r, muS);
return texture2D(sampler, uv).rgb;
}
// Rayleigh phase function
float phaseFunctionR(float mu) {
return (3.0 / (16.0 * M_PI)) * (1.0 + mu * mu);
}
// Mie phase function
float phaseFunctionM(float mu) {
return 1.5 * 1.0 / (4.0 * M_PI) * (1.0 - mieG*mieG) * pow(1.0 + (mieG*mieG) - 2.0*mieG*mu, -3.0/2.0) * (1.0 + mu * mu) / (2.0 + mieG*mieG);
}
// approximated single Mie scattering (cf. approximate Cm in paragraph "Angular precision")
vec3 getMie(vec4 rayMie) { // rayMie.rgb=C*, rayMie.w=Cm,r
return rayMie.rgb * rayMie.w / max(rayMie.r, 1e-4) * (betaR.r / betaR);
}
// ----------------------------------------------------------------------------
// PUBLIC FUNCTIONS
// ----------------------------------------------------------------------------
// incident sun light at given position (radiance)
// r=length(x)
// muS=dot(x,s) / r
vec3 sunRadiance(float r, float muS) {
return transmittanceWithShadow(r, muS) * SUN_INTENSITY;
}
// incident sky light at given position, integrated over the hemisphere (irradiance)
// r=length(x)
// muS=dot(x,s) / r
vec3 skyIrradiance(float r, float muS) {
return irradiance(skyIrradianceSampler, r, muS) * SUN_INTENSITY;
}
// scattered sunlight between two points
// camera=observer
// viewdir=unit vector towards observed point
// sundir=unit vector towards the sun
// return scattered light and extinction coefficient
vec3 skyRadiance(vec3 camera, vec3 viewdir, vec3 sundir, out vec3 extinction)
{
vec3 result;
float r = length(camera);
float rMu = dot(camera, viewdir);
float mu = rMu / r;
float r0 = r;
float mu0 = mu;
float deltaSq = sqrt(rMu * rMu - r * r + Rt*Rt);
float din = max(-rMu - deltaSq, 0.0);
if (din > 0.0) {
camera += din * viewdir;
rMu += din;
mu = rMu / Rt;
r = Rt;
}
if (r <= Rt) {
float nu = dot(viewdir, sundir);
float muS = dot(camera, sundir) / r;
vec4 inScatter = texture4D(inscatterSampler, r, rMu / r, muS, nu);
extinction = transmittance(r, mu);
vec3 inScatterM = getMie(inScatter);
float phase = phaseFunctionR(nu);
float phaseM = phaseFunctionM(nu);
result = inScatter.rgb * phase + inScatterM * phaseM;
} else {
result = vec3(0.0);
extinction = vec3(1.0);
}
return result * SUN_INTENSITY;
}
// scattered sunlight between two points
// camera=observer
// point=point on the ground
// sundir=unit vector towards the sun
// return scattered light and extinction coefficient
vec3 inScattering(vec3 camera, vec3 point, vec3 sundir, out vec3 extinction) {
vec3 result;
vec3 viewdir = point - camera;
float d = length(viewdir);
viewdir = viewdir / d;
float r = length(camera);
float rMu = dot(camera, viewdir);
float mu = rMu / r;
float r0 = r;
float mu0 = mu;
float deltaSq = sqrt(rMu * rMu - r * r + Rt*Rt);
float din = max(-rMu - deltaSq, 0.0);
if (din > 0.0) {
camera += din * viewdir;
rMu += din;
mu = rMu / Rt;
r = Rt;
d -= din;
}
if (r <= Rt) {
float nu = dot(viewdir, sundir);
float muS = dot(camera, sundir) / r;
vec4 inScatter;
if (r < Rg + 600.0) {
// avoids imprecision problems in aerial perspective near ground
float f = (Rg + 600.0) / r;
r = r * f;
rMu = rMu * f;
point = point * f;
}
float r1 = length(point);
float rMu1 = dot(point, viewdir);
float mu1 = rMu1 / r1;
float muS1 = dot(point, sundir) / r1;
if (mu > 0.0) {
extinction = min(transmittance(r, mu) / transmittance(r1, mu1), 1.0);
} else {
extinction = min(transmittance(r1, -mu1) / transmittance(r, -mu), 1.0);
}
vec4 inScatter0 = texture4D(inscatterSampler, r, mu, muS, nu);
vec4 inScatter1 = texture4D(inscatterSampler, r1, mu1, muS1, nu);
inScatter = max(inScatter0 - inScatter1 * extinction.rgbr, 0.0);
// avoids imprecision problems in Mie scattering when sun is below horizon
inScatter.w *= smoothstep(0.00, 0.02, muS);
vec3 inScatterM = getMie(inScatter);
float phase = phaseFunctionR(nu);
float phaseM = phaseFunctionM(nu);
result = inScatter.rgb * phase + inScatterM * phaseM;
} else {
result = vec3(0.0);
extinction = vec3(1.0);
}
return result * SUN_INTENSITY;
}
void sunRadianceAndSkyIrradiance(vec3 worldP, vec3 worldS, out vec3 sunL, out vec3 skyE)
{
vec3 worldV = normalize(worldP); // vertical vector
float r = length(worldP);
float muS = dot(worldV, worldS);
sunL = sunRadiance(r, muS);
skyE = skyIrradiance(r, muS);
}
// ----------------------------------------------------------------------------
// SKYMAP AND HDR
// ----------------------------------------------------------------------------
uniform sampler2D skySampler;
uniform float hdrExposure;
vec4 skyRadiance(vec2 u) {
return texture2DLod(skySampler, (u * (0.5 / 1.1) + 0.5), 0.0);
}
vec3 hdr(vec3 L) {
L = L * hdrExposure;
L.r = L.r < 1.413 ? pow(L.r * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.r);
L.g = L.g < 1.413 ? pow(L.g * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.g);
L.b = L.b < 1.413 ? pow(L.b * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.b);
return L;
}
// ----------------------------------------------------------------------------
// CLOUDS
// ----------------------------------------------------------------------------
uniform sampler2D noiseSampler;
uniform float octaves;
uniform float lacunarity;
uniform float gain;
uniform float norm;
uniform float clamp1;
uniform float clamp2;
uniform vec4 cloudsColor;
vec4 cloudColor(vec3 worldP, vec3 worldCamera, vec3 worldSunDir) {
const float a = 23.0 / 180.0 * M_PI;
mat2 m = mat2(cos(a), sin(a), -sin(a), cos(a));
vec2 st = worldP.xy / 1000000.0;
float g = 1.0;
float r = 0.0;
for (float i = 0.0; i < octaves; i += 1.0) {
r -= g * (2.0 * texture2D(noiseSampler, st).r - 1.0);
st = (m * st) * lacunarity;
g *= gain;
}
float v = clamp((r * norm - clamp1) / (clamp2 - clamp1), 0.0, 1.0);
float t = clamp((r * norm * 3.0 - clamp1) / (clamp2 - clamp1), 0.0, 1.0);
vec3 PP = worldP + earthPos;
vec3 Lsun;
vec3 Esky;
vec3 extinction;
sunRadianceAndSkyIrradiance(PP, worldSunDir, Lsun, Esky);
vec3 cloudL = v * (Lsun * max(worldSunDir.z, 0.0) + Esky / 10.0) / M_PI;
vec3 inscatter = inScattering(worldCamera + earthPos, PP, worldSunDir, extinction);
cloudL = cloudL * extinction + inscatter;
return vec4(cloudL, t) * cloudsColor;
}
vec4 cloudColorV(vec3 worldCamera, vec3 V, vec3 worldSunDir) {
vec3 P = worldCamera + V * (3000.0 - worldCamera.z) / V.z;
return cloudColor(P, worldCamera, worldSunDir);
}
#endif