-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
139 lines (120 loc) · 7.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
from datetime import datetime, timedelta
import pandas as pd
import tensorflow as tf
from colorama import Fore, Style
from src.DataProviders.SbrOddsProvider import SbrOddsProvider
from src.Predict import NN_Runner, XGBoost_Runner
from src.Utils.Dictionaries import team_index_current
from src.Utils.tools import create_todays_games_from_odds, get_json_data, to_data_frame, get_todays_games_json, create_todays_games
todays_games_url = 'https://data.nba.com/data/10s/v2015/json/mobile_teams/nba/2023/scores/00_todays_scores.json'
data_url = 'https://stats.nba.com/stats/leaguedashteamstats?' \
'Conference=&DateFrom=&DateTo=&Division=&GameScope=&' \
'GameSegment=&LastNGames=0&LeagueID=00&Location=&' \
'MeasureType=Base&Month=0&OpponentTeamID=0&Outcome=&' \
'PORound=0&PaceAdjust=N&PerMode=PerGame&Period=0&' \
'PlayerExperience=&PlayerPosition=&PlusMinus=N&Rank=N&' \
'Season=2023-24&SeasonSegment=&SeasonType=Regular+Season&ShotClockRange=&' \
'StarterBench=&TeamID=0&TwoWay=0&VsConference=&VsDivision='
def createTodaysGames(games, df, odds):
match_data = []
todays_games_uo = []
home_team_odds = []
away_team_odds = []
home_team_days_rest = []
away_team_days_rest = []
for game in games:
home_team = game[0]
away_team = game[1]
if home_team not in team_index_current or away_team not in team_index_current:
continue
if odds is not None:
game_odds = odds[home_team + ':' + away_team]
todays_games_uo.append(game_odds['under_over_odds'])
home_team_odds.append(game_odds[home_team]['money_line_odds'])
away_team_odds.append(game_odds[away_team]['money_line_odds'])
else:
todays_games_uo.append(input(home_team + ' vs ' + away_team + ': '))
home_team_odds.append(input(home_team + ' odds: '))
away_team_odds.append(input(away_team + ' odds: '))
# calculate days rest for both teams
schedule_df = pd.read_csv('Data/nba-2023-UTC.csv', parse_dates=['Date'], date_format='%d/%m/%Y %H:%M')
home_games = schedule_df[(schedule_df['Home Team'] == home_team) | (schedule_df['Away Team'] == home_team)]
away_games = schedule_df[(schedule_df['Home Team'] == away_team) | (schedule_df['Away Team'] == away_team)]
previous_home_games = home_games.loc[schedule_df['Date'] <= datetime.today()].sort_values('Date',ascending=False).head(1)['Date']
previous_away_games = away_games.loc[schedule_df['Date'] <= datetime.today()].sort_values('Date',ascending=False).head(1)['Date']
if len(previous_home_games) > 0:
last_home_date = previous_home_games.iloc[0]
home_days_off = timedelta(days=1) + datetime.today() - last_home_date
else:
home_days_off = timedelta(days=7)
if len(previous_away_games) > 0:
last_away_date = previous_away_games.iloc[0]
away_days_off = timedelta(days=1) + datetime.today() - last_away_date
else:
away_days_off = timedelta(days=7)
# print(f"{away_team} days off: {away_days_off.days} @ {home_team} days off: {home_days_off.days}")
home_team_days_rest.append(home_days_off.days)
away_team_days_rest.append(away_days_off.days)
home_team_series = df.iloc[team_index_current.get(home_team)]
away_team_series = df.iloc[team_index_current.get(away_team)]
stats = pd.concat([home_team_series, away_team_series])
stats['Days-Rest-Home'] = home_days_off.days
stats['Days-Rest-Away'] = away_days_off.days
match_data.append(stats)
games_data_frame = pd.concat(match_data, ignore_index=True, axis=1)
games_data_frame = games_data_frame.T
frame_ml = games_data_frame.drop(columns=['TEAM_ID', 'TEAM_NAME'])
data = frame_ml.values
data = data.astype(float)
return data, todays_games_uo, frame_ml, home_team_odds, away_team_odds
def main():
odds = None
if args.odds:
odds = SbrOddsProvider(sportsbook=args.odds).get_odds()
games = create_todays_games_from_odds(odds)
if len(games) == 0:
print("No games found.")
return
if (games[0][0] + ':' + games[0][1]) not in list(odds.keys()):
print(games[0][0] + ':' + games[0][1])
print(Fore.RED,"--------------Games list not up to date for todays games!!! Scraping disabled until list is updated.--------------")
print(Style.RESET_ALL)
odds = None
else:
print(f"------------------{args.odds} odds data------------------")
for g in odds.keys():
home_team, away_team = g.split(":")
print(f"{away_team} ({odds[g][away_team]['money_line_odds']}) @ {home_team} ({odds[g][home_team]['money_line_odds']})")
else:
data = get_todays_games_json(todays_games_url)
games = create_todays_games(data)
data = get_json_data(data_url)
df = to_data_frame(data)
data, todays_games_uo, frame_ml, home_team_odds, away_team_odds = createTodaysGames(games, df, odds)
if args.nn:
print("------------Neural Network Model Predictions-----------")
data = tf.keras.utils.normalize(data, axis=1)
NN_Runner.nn_runner(data, todays_games_uo, frame_ml, games, home_team_odds, away_team_odds, args.kc)
print("-------------------------------------------------------")
if args.xgb:
print("---------------XGBoost Model Predictions---------------")
XGBoost_Runner.xgb_runner(data, todays_games_uo, frame_ml, games, home_team_odds, away_team_odds, args.kc)
print("-------------------------------------------------------")
if args.A:
print("---------------XGBoost Model Predictions---------------")
XGBoost_Runner.xgb_runner(data, todays_games_uo, frame_ml, games, home_team_odds, away_team_odds, args.kc)
print("-------------------------------------------------------")
data = tf.keras.utils.normalize(data, axis=1)
print("------------Neural Network Model Predictions-----------")
NN_Runner.nn_runner(data, todays_games_uo, frame_ml, games, home_team_odds, away_team_odds, args.kc)
print("-------------------------------------------------------")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Model to Run')
parser.add_argument('-xgb', action='store_true', help='Run with XGBoost Model')
parser.add_argument('-nn', action='store_true', help='Run with Neural Network Model')
parser.add_argument('-A', action='store_true', help='Run all Models')
parser.add_argument('-odds', help='Sportsbook to fetch from. (fanduel, draftkings, betmgm, pointsbet, caesars, wynn, bet_rivers_ny')
parser.add_argument('-kc', action='store_true', help='Calculates percentage of bankroll to bet based on model edge')
args = parser.parse_args()
main()