-
Notifications
You must be signed in to change notification settings - Fork 15
/
export.py
194 lines (173 loc) · 5.96 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""Export trained model to TorchScript, ONNX, TensorRT.
- Author: Jongkuk Lim
- Contact: [email protected]
"""
import argparse
import os
from typing import Optional
import torch
import yaml
from kindle import YOLOModel
from torch import nn
from scripts.model_converter.model_converter import ModelConverter
from scripts.utils.logger import colorstr, get_logger
from scripts.utils.torch_utils import load_model_weights
from scripts.utils.wandb_utils import get_ckpt_path
LOGGER = get_logger(__name__)
def get_parser() -> argparse.Namespace:
"""Get argument parser."""
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--weights", type=str, default="", help="Model weight path.")
parser.add_argument(
"--model-cfg", type=str, default="", help="Model config file path."
)
parser.add_argument(
"--type",
type=str,
default="tensorrt",
help="Model type to convert. (torchscript, ts, onnx, tensorrt, trt",
)
parser.add_argument("--dst", type=str, default="export", help="Export directory")
parser.add_argument("--batch-size", type=int, default=8, help="Batch size")
parser.add_argument("-iw", "--img-width", type=int, default=640, help="Image width")
parser.add_argument(
"-ih",
"--img-height",
type=int,
default=-1,
help="Image height. (-1 will set image height to be identical to image width.)",
)
parser.add_argument(
"-ct", "--conf-t", type=float, default=0.001, help="Confidence threshold."
)
parser.add_argument(
"-it", "--iou-t", type=float, default=0.65, help="IoU threshold."
)
parser.add_argument(
"--top-k",
type=int,
default=512,
help="Use top-k objects in NMS layer (TensorRT only)",
)
parser.add_argument(
"-ktk",
"--keep-top-k",
default=100,
help="Keep top-k after NMS. This must be less or equal to top-k (TensorRT only)",
)
parser.add_argument(
"--no-rect",
action="store_false",
dest="rect",
default=False,
help="Use squared image.",
)
parser.add_argument(
"--rect",
action="store_true",
dest="rect",
default=False,
help="Use rectangular image",
)
parser.add_argument(
"--dtype",
type=str,
default="fp16",
help="Data type to convert. (fp16 or int8) (int8: TensorRT only.)",
)
parser.add_argument(
"--opset", type=int, default=11, help="opset version. (ONNX and TensorRT only)"
)
parser.add_argument(
"--gpu-mem",
type=int,
default=6,
help="Target GPU memory restriction (GiB) (TensorRT only)",
)
parser.add_argument("--verbose", type=int, default=1, help="Verbosity level")
return parser.parse_args()
if __name__ == "__main__":
args = get_parser()
if args.img_height < 0:
args.img_height = args.img_width
if args.weights == "" and args.model_cfg == "":
LOGGER.error(
"Either "
+ colorstr("bold", "--weight")
+ " or "
+ colorstr("bold", "--model-cfg")
+ " must be provided."
)
exit(1)
ckpt_model: Optional[nn.Module] = None
if args.weights == "":
LOGGER.warning(
"Providing "
+ colorstr("bold", "no weights path")
+ " will convert randomly initialized model. Please use only for a experiment purpose."
)
else:
ckpt_path = get_ckpt_path(args.weights)
ckpt = torch.load(ckpt_path)
if isinstance(ckpt, dict):
ckpt_model = ckpt["ema"] if "ema" in ckpt.keys() else ckpt["model"]
else:
ckpt_model = ckpt
if ckpt_model:
ckpt_model = ckpt_model.cpu().float()
if ckpt_model is None and args.model_cfg == "":
LOGGER.warning("No weights and no model_cfg has been found.")
exit(1)
if args.model_cfg != "" and ckpt_model:
model = YOLOModel(args.model_cfg, verbose=args.verbose > 0)
model = load_model_weights(model, {"model": ckpt_model}, exclude=[])
else:
model = ckpt_model
args.stride_size = int(max(model.stride)) # type: ignore
model = model.eval().export(verbose=args.verbose > 0)
converter = ModelConverter(
model, args.batch_size, (args.img_height, args.img_width), verbose=args.verbose
)
converter.dry_run()
model_name = (
f"model_{args.dtype}_{args.batch_size}_{args.img_width}_{args.img_height}"
)
model_ext = ""
if not os.path.isdir(args.dst):
os.mkdir(args.dst)
if args.type in ("torchscript", "ts"):
# TODO(jeikeilim): Add NMS layer
converter.to_torch_script(
os.path.join(args.dst, f"{model_name}.ts"), half=args.dtype == "fp16"
)
model_ext = "ts"
elif args.type in ("onnx",):
converter.to_onnx(
os.path.join(args.dst, f"{model_name}.onnx"), opset_version=args.opset
)
model_ext = "onnx"
elif args.type in ("tensorrt", "trt"):
model.model[-1].out_xyxy = True
converter.to_tensorrt(
os.path.join(args.dst, f"{model_name}.trt"),
opset_version=args.opset,
fp16=args.dtype == "fp16",
int8=args.dtype == "int8",
workspace_size_gib=args.gpu_mem,
conf_thres=args.conf_t,
iou_thres=args.iou_t,
top_k=args.top_k,
keep_top_k=args.keep_top_k,
)
model_ext = "trt"
else:
LOGGER.warn(
f"Wrong model type. Please specify model type among ('torchscript', 'ts', 'onnx', 'tensorrt', 'trt'). Given type: {args.type}"
)
with open(os.path.join(args.dst, f"{model_name}_{model_ext}.yaml"), "w") as f:
yaml.dump(vars(args), f)
LOGGER.info(
f"Converted model has been saved to {os.path.join(args.dst, model_name)}.{model_ext}"
)