-
Notifications
You must be signed in to change notification settings - Fork 1
/
dcgan.py
528 lines (392 loc) · 20.1 KB
/
dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import os
import tensorflow as tf
import numpy as np
from PIL import Image
import helper
from glob import glob
import pickle as pkl
import scipy.misc
import time
import cv2
import matplotlib.pyplot as plt
do_preprocess = True
from_checkpoint = False
data_dir = 'cats_bigger_than_128x128' # Data
data_resized_dir = "resized_data"# Resized data
if do_preprocess == True:
if not os.path.isdir(data_resized_dir):
os.makedirs(data_resized_dir)
for each in os.listdir(data_dir):
image = cv2.imread(os.path.join(data_dir, each))
image = cv2.resize(image, (128, 128))
cv2.imwrite(os.path.join(data_resized_dir, each), image)
# This part was taken from Udacity Face generator project
def get_image(image_path, width, height, mode):
"""
Read image from image_path
:param image_path: Path of image
:param width: Width of image
:param height: Height of image
:param mode: Mode of image
:return: Image data
"""
image = Image.open(image_path)
return np.array(image.convert(mode))
def get_batch(image_files, width, height, mode):
data_batch = np.array(
[get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)
# Make sure the images are in 4 dimensions
if len(data_batch.shape) < 4:
data_batch = data_batch.reshape(data_batch.shape + (1,))
return data_batch
show_n_images = 25
mnist_images = helper.get_batch(glob(os.path.join(data_resized_dir, '*.jpg'))[:show_n_images], 64, 64, 'RGB')
plt.imshow(helper.images_square_grid(mnist_images, 'RGB'))
# Taken from Udacity face generator project
from distutils.version import LooseVersion
import warnings
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
def model_inputs(real_dim, z_dim):
"""
Create the model inputs
:param real_dim: tuple containing width, height and channels
:param z_dim: The dimension of Z
:return: Tuple of (tensor of real input images, tensor of z data, learning rate G, learning rate D)
"""
inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='inputs_real')
inputs_z = tf.placeholder(tf.float32, (None, z_dim), name="input_z")
learning_rate_G = tf.placeholder(tf.float32, name="learning_rate_G")
learning_rate_D = tf.placeholder(tf.float32, name="learning_rate_D")
return inputs_real, inputs_z, learning_rate_G, learning_rate_D
def generator(z, output_channel_dim, is_train=True):
''' Build the generator network.
Arguments
---------
z : Input tensor for the generator
output_channel_dim : Shape of the generator output
n_units : Number of units in hidden layer
reuse : Reuse the variables with tf.variable_scope
alpha : leak parameter for leaky ReLU
Returns
-------
out:
'''
with tf.variable_scope("generator", reuse= not is_train):
# First FC layer --> 8x8x1024
fc1 = tf.layers.dense(z, 8*8*1024)
# Reshape it
fc1 = tf.reshape(fc1, (-1, 8, 8, 1024))
# Leaky ReLU
fc1 = tf.nn.leaky_relu(fc1, alpha=alpha)
# Transposed conv 1 --> BatchNorm --> LeakyReLU
# 8x8x1024 --> 16x16x512
trans_conv1 = tf.layers.conv2d_transpose(inputs = fc1,
filters = 512,
kernel_size = [5,5],
strides = [2,2],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name="trans_conv1")
batch_trans_conv1 = tf.layers.batch_normalization(inputs = trans_conv1, training=is_train, epsilon=1e-5, name="batch_trans_conv1")
trans_conv1_out = tf.nn.leaky_relu(batch_trans_conv1, alpha=alpha, name="trans_conv1_out")
# Transposed conv 2 --> BatchNorm --> LeakyReLU
# 16x16x512 --> 32x32x256
trans_conv2 = tf.layers.conv2d_transpose(inputs = trans_conv1_out,
filters = 256,
kernel_size = [5,5],
strides = [2,2],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name="trans_conv2")
batch_trans_conv2 = tf.layers.batch_normalization(inputs = trans_conv2, training=is_train, epsilon=1e-5, name="batch_trans_conv2")
trans_conv2_out = tf.nn.leaky_relu(batch_trans_conv2, alpha=alpha, name="trans_conv2_out")
# Transposed conv 3 --> BatchNorm --> LeakyReLU
# 32x32x256 --> 64x64x128
trans_conv3 = tf.layers.conv2d_transpose(inputs = trans_conv2_out,
filters = 128,
kernel_size = [5,5],
strides = [2,2],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name="trans_conv3")
batch_trans_conv3 = tf.layers.batch_normalization(inputs = trans_conv3, training=is_train, epsilon=1e-5, name="batch_trans_conv3")
trans_conv3_out = tf.nn.leaky_relu(batch_trans_conv3, alpha=alpha, name="trans_conv3_out")
# Transposed conv 4 --> BatchNorm --> LeakyReLU
# 64x64x128 --> 128x128x64
trans_conv4 = tf.layers.conv2d_transpose(inputs = trans_conv3_out,
filters = 64,
kernel_size = [5,5],
strides = [2,2],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name="trans_conv4")
batch_trans_conv4 = tf.layers.batch_normalization(inputs = trans_conv4, training=is_train, epsilon=1e-5, name="batch_trans_conv4")
trans_conv4_out = tf.nn.leaky_relu(batch_trans_conv4, alpha=alpha, name="trans_conv4_out")
# Transposed conv 5 --> tanh
# 128x128x64 --> 128x128x3
logits = tf.layers.conv2d_transpose(inputs = trans_conv4_out,
filters = 3,
kernel_size = [5,5],
strides = [1,1],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name="logits")
out = tf.tanh(logits, name="out")
return out
def discriminator(x, is_reuse=False, alpha = 0.2):
''' Build the discriminator network.
Arguments
---------
x : Input tensor for the discriminator
n_units: Number of units in hidden layer
reuse : Reuse the variables with tf.variable_scope
alpha : leak parameter for leaky ReLU
Returns
-------
out, logits:
'''
with tf.variable_scope("discriminator", reuse = is_reuse):
# Input layer 128*128*3 --> 64x64x64
# Conv --> BatchNorm --> LeakyReLU
conv1 = tf.layers.conv2d(inputs = x,
filters = 64,
kernel_size = [5,5],
strides = [2,2],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv1')
batch_norm1 = tf.layers.batch_normalization(conv1,
training = True,
epsilon = 1e-5,
name = 'batch_norm1')
conv1_out = tf.nn.leaky_relu(batch_norm1, alpha=alpha, name="conv1_out")
# 64x64x64--> 32x32x128
# Conv --> BatchNorm --> LeakyReLU
conv2 = tf.layers.conv2d(inputs = conv1_out,
filters = 128,
kernel_size = [5, 5],
strides = [2, 2],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv2')
batch_norm2 = tf.layers.batch_normalization(conv2,
training = True,
epsilon = 1e-5,
name = 'batch_norm2')
conv2_out = tf.nn.leaky_relu(batch_norm2, alpha=alpha, name="conv2_out")
# 32x32x128 --> 16x16x256
# Conv --> BatchNorm --> LeakyReLU
conv3 = tf.layers.conv2d(inputs = conv2_out,
filters = 256,
kernel_size = [5, 5],
strides = [2, 2],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv3')
batch_norm3 = tf.layers.batch_normalization(conv3,
training = True,
epsilon = 1e-5,
name = 'batch_norm3')
conv3_out = tf.nn.leaky_relu(batch_norm3, alpha=alpha, name="conv3_out")
# 16x16x256 --> 16x16x512
# Conv --> BatchNorm --> LeakyReLU
conv4 = tf.layers.conv2d(inputs = conv3_out,
filters = 512,
kernel_size = [5, 5],
strides = [1, 1],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv4')
batch_norm4 = tf.layers.batch_normalization(conv4,
training = True,
epsilon = 1e-5,
name = 'batch_norm4')
conv4_out = tf.nn.leaky_relu(batch_norm4, alpha=alpha, name="conv4_out")
# 16x16x512 --> 8x8x1024
# Conv --> BatchNorm --> LeakyReLU
conv5 = tf.layers.conv2d(inputs = conv4_out,
filters = 1024,
kernel_size = [5, 5],
strides = [2, 2],
padding = "SAME",
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name='conv5')
batch_norm5 = tf.layers.batch_normalization(conv5,
training = True,
epsilon = 1e-5,
name = 'batch_norm5')
conv5_out = tf.nn.leaky_relu(batch_norm5, alpha=alpha, name="conv5_out")
# Flatten it
flatten = tf.reshape(conv5_out, (-1, 8*8*1024))
# Logits
logits = tf.layers.dense(inputs = flatten,
units = 1,
activation = None)
out = tf.sigmoid(logits)
return out, logits
def model_loss(input_real, input_z, output_channel_dim, alpha):
"""
Get the loss for the discriminator and generator
:param input_real: Images from the real dataset
:param input_z: Z input
:param out_channel_dim: The number of channels in the output image
:return: A tuple of (discriminator loss, generator loss)
"""
# Generator network here
g_model = generator(input_z, output_channel_dim)
# g_model is the generator output
# Discriminator network here
d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)
d_model_fake, d_logits_fake = discriminator(g_model,is_reuse=True, alpha=alpha)
# Calculate losses
d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
labels=tf.ones_like(d_model_real)))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.zeros_like(d_model_fake)))
d_loss = d_loss_real + d_loss_fake
g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.ones_like(d_model_fake)))
return d_loss, g_loss
def model_optimizers(d_loss, g_loss, lr_D, lr_G, beta1):
"""
Get optimization operations
:param d_loss: Discriminator loss Tensor
:param g_loss: Generator loss Tensor
:param learning_rate: Learning Rate Placeholder
:param beta1: The exponential decay rate for the 1st moment in the optimizer
:return: A tuple of (discriminator training operation, generator training operation)
"""
# Get the trainable_variables, split into G and D parts
t_vars = tf.trainable_variables()
g_vars = [var for var in t_vars if var.name.startswith("generator")]
d_vars = [var for var in t_vars if var.name.startswith("discriminator")]
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# Generator update
gen_updates = [op for op in update_ops if op.name.startswith('generator')]
# Optimizers
with tf.control_dependencies(gen_updates):
d_train_opt = tf.train.AdamOptimizer(learning_rate=lr_D, beta1=beta1).minimize(d_loss, var_list=d_vars)
g_train_opt = tf.train.AdamOptimizer(learning_rate=lr_G, beta1=beta1).minimize(g_loss, var_list=g_vars)
return d_train_opt, g_train_opt
def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode, image_path, save, show):
"""
Show example output for the generator
:param sess: TensorFlow session
:param n_images: Number of Images to display
:param input_z: Input Z Tensor
:param out_channel_dim: The number of channels in the output image
:param image_mode: The mode to use for images ("RGB" or "L")
:param image_path: Path to save the image
"""
cmap = None if image_mode == 'RGB' else 'gray'
z_dim = input_z.get_shape().as_list()[-1]
example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])
samples = sess.run(
generator(input_z, out_channel_dim, False),
feed_dict={input_z: example_z})
images_grid = helper.images_square_grid(samples, image_mode)
if save == True:
# Save image
images_grid.save(image_path, 'JPEG')
if show == True:
plt.imshow(images_grid, cmap=cmap)
plt.show()
def train(epoch_count, batch_size, z_dim, learning_rate_D, learning_rate_G, beta1, get_batches, data_shape, data_image_mode, alpha):
"""
Train the GAN
:param epoch_count: Number of epochs
:param batch_size: Batch Size
:param z_dim: Z dimension
:param learning_rate: Learning Rate
:param beta1: The exponential decay rate for the 1st moment in the optimizer
:param get_batches: Function to get batches
:param data_shape: Shape of the data
:param data_image_mode: The image mode to use for images ("RGB" or "L")
"""
# Create our input placeholders
input_images, input_z, lr_G, lr_D = model_inputs(data_shape[1:], z_dim)
# Losses
d_loss, g_loss = model_loss(input_images, input_z, data_shape[3], alpha)
# Optimizers
d_opt, g_opt = model_optimizers(d_loss, g_loss, lr_D, lr_G, beta1)
i = 0
version = "firstTrain"
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Saver
saver = tf.train.Saver()
num_epoch = 0
if from_checkpoint == True:
saver.restore(sess, "./models/model.ckpt")
show_generator_output(sess, 4, input_z, data_shape[3], data_image_mode, image_path, True, False)
else:
for epoch_i in range(epoch_count):
num_epoch += 1
if num_epoch % 5 == 0:
# Save model every 5 epochs
#if not os.path.exists("models/" + version):
# os.makedirs("models/" + version)
save_path = saver.save(sess, "./models/model.ckpt")
print("Model saved")
for batch_images in get_batches(batch_size):
# Random noise
batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
i += 1
# Run optimizers
_ = sess.run(d_opt, feed_dict={input_images: batch_images, input_z: batch_z, lr_D: learning_rate_D})
_ = sess.run(g_opt, feed_dict={input_images: batch_images, input_z: batch_z, lr_G: learning_rate_G})
if i % 10 == 0:
train_loss_d = d_loss.eval({input_z: batch_z, input_images: batch_images})
train_loss_g = g_loss.eval({input_z: batch_z})
# Save it
image_name = str(i) + ".jpg"
if not os.path.isdir("./images/"):
os.makedirs("./images/")
image_path = "./images/" + image_name
show_generator_output(sess, 4, input_z, data_shape[3], data_image_mode, image_path, True, False)
# Print every 5 epochs (for stability overwize the jupyter notebook will bug)
if i % 1500 == 0:
image_name = str(i) + ".jpg"
image_path = "./images/" + image_name
print("Epoch {}/{}...".format(epoch_i+1, epochs),
"Discriminator Loss: {:.4f}...".format(train_loss_d),
"Generator Loss: {:.4f}".format(train_loss_g))
show_generator_output(sess, 4, input_z, data_shape[3], data_image_mode, image_path, True, False)
return losses, samples
# Size input image for discriminator
real_size = (128,128,3)
# Size of latent vector to generator
z_dim = 100
learning_rate_D = .00005 # Thanks to Alexia Jolicoeur Martineau https://ajolicoeur.wordpress.com/cats/
learning_rate_G = 2e-4 # Thanks to Alexia Jolicoeur Martineau https://ajolicoeur.wordpress.com/cats/
batch_size = 8
epochs = 215
alpha = 0.2
beta1 = 0.5
# Create the network
#model = DGAN(real_size, z_size, learning_rate, alpha, beta1)
# Load the data and train the network here
dataset = helper.Dataset(glob(os.path.join(data_resized_dir, '*.jpg')))
with tf.Graph().as_default():
losses, samples = train(epochs, batch_size, z_dim, learning_rate_D, learning_rate_G, beta1, dataset.get_batches,
dataset.shape, dataset.image_mode, alpha)
if not os.path.isdir("./graph"):
os.makedirs("./graph")
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator', alpha=0.5)
plt.plot(losses.T[1], label='Generator', alpha=0.5)
plt.title("Training Losses")
plt.legend()
fig1 = plt.gcf()
fig1.savefig('graph/training_loss.png', dpi=2000)