Real-time traffic congestion analysis and route optimization app for Singaporean drivers. Flowmotion uses computer vision to analyze traffic camera feeds for live traffic congestion rating and provide intelligent routing recommendations based on inferred congestion rating.
- 🚦 Real-time traffic congestion analysis using YOLOv8
- 🗺️ Intelligent route optimization with OSRM
- 📊 Historical traffic pattern visualization
- 📍 Favorite locations management
- 📱 Cross-platform mobile app (iOS & Android)
---
title: "Flowmotion System Architecture"
---
block-beta
columns 1
block:present_layer
columns 7
space:3 present["Presentation Layer"] space:3
space:2 app("Mobile App") space:1 email["Email"] space:2
end
block:logic_layer
columns 7
space:3 logic["Logic Layer"] space:3
backend["Backend"] space osrm_c["OSRM\n(congestion)"] space pipeline["Pipeline"] space model["Model"]
backend -- "Routes \n (congestion)" --> osrm_c
pipeline -- "Rating" --> model
osrm_c -- "Congestion \nrouting\nprofile" --> pipeline
end
space
block:data_layer
columns 7
space:3 data["Data Layer"] space:3
osrm(("OSRM API")) space db[("Firestore DB")] space auth["Firebase\nAuthentication"] space api(("Data.gov.sg\nAPI"))
end
app -- "User data" --> db
app -- "User login" --> auth
app -- "Routing, Geocoding\n & Congestion" --> backend
email -- "Receive OTP" --> auth
app -- "Enter OTP" --> email
pipeline -- "Traffic Images" --> api
backend -- "Read congestion" --> db
backend -- "Routes\n(no congestion)" --> osrm
pipeline -- "Write congestion" --> db
classDef Routing fill:#696
class present,logic,data,external BT
classDef BT stroke:transparent,fill:transparent,font-size:1.2rem;
- Frontend: Flutter
- Backend: Express.js, Firebase
- ML Pipeline: YOLOv8, PyTorch
- Infrastructure: Google Cloud Run, Docker
- Flutter >=3.24.1
- Node.js >=18
- Docker
- Firebase CLI
- Clone the repository
git clone https://github.com/flowmotion/flowmotion.git
cd flowmotion
- Install dependencies
- Backend
# Backend
cd backend
npm install
- Mobile App
```bash
# Mobile
flutter pub get
- Run Development builds
- Backend
# Run backend locally
cd backend
npm run dev
- Mobile App
# Run Flutter app
flutter run
- Image Processing: ~124ms/image
- ML Model Accuracy: 80% (vehicles)
- Route Update Latency: <332s
- data.gov.sg for traffic camera feeds
- OSRM for route optimization engine
- YOLOv8 for computer vision model
- Singapore Land Transport Authority for traffic data