Paper: John J., Sevugan P. (2021) Image Dehazing Through Dark Channel Prior and Color Attenuation Prior. In: Singh M., Tyagi V., Gupta P.K., Flusser J., Ören T., Sonawane V.R. (eds) Advances in Computing and Data Sciences. ICACDS 2021. Communications in Computer and Information Science, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-030-88244-0_15
Implementation of Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior.
- Q. Zhu, J. Mai, and L. Shao ,"A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior", in IEEE Transactions On Image Processing, Vol. 24, NO. 11, NOVEMBER 2015, pp. 3522-3533
folder structure:
------------------
Dehazing-Color-Attenuation/dehaze.py # main
To dehaze save your image file:
python3 dehaze.py vit_hazy.jpg # the output 'vit_hazy_dehazed.jpg' will be saved in the same folder
- Original author - TummanapallyAnuraag
- Made code reproducible - jacob5412
This program implement single image dehazing using dark channel prior.
- He, Kaiming, Jian Sun, and Xiaoou Tang. "Single image haze removal using dark channel prior." IEEE transactions on pattern analysis and machine intelligence 33.12 (2011): 2341-2353.
- He, Kaiming, Jian Sun, and Xiaoou Tang. "X.: Guided image filtering." In: ECCV. 2010.
folder structure:
------------------
Dehazing-Dark-Channel-Prior/dehaze.py # file to execute
To dehaze save your image file:
python3 dehaze.py image/city2_hazy.png # the output 'city2_hazy_dehazed.png' will be saved in the same folder
- How dehazing works: a simple explanation
- Zhang, Ning, Lin Zhang, and Zaixi Cheng. "Towards Simulating Foggy and Hazy Images and Evaluating Their Authenticity." International Conference on Neural Information Processing. Springer, Cham, 2017.
folder structure:
------------------
Hazing/FoHIS/const.py # define const
fog.py # main
parameter.py # all parameters used in simulating fog/haze are defined here.
tool_kit.py # some useful functions
Hazing/AuthESI/compute_aggd.py
compute_authenticity.py # main
guided_filter.py # some functions
prisparam_16_hazeandfog.mat # pre-trained model
Hazing/img/img.jpg # RGB image
imgd.jpg # depth image
result.jpg # simulation
- To simulate fog/haze effects run p:
python fog.py # the output 'result.jpg' will be saved in ../img/
- To evaluate the authenticity run :
python compute_authenticity.py # to evaluate 'result.jpg' in ../img/
- Original author - noahzn (Noah)
- Made code reproducible - jacob5412
- Facebook 3D Photo Depth Map Generator using Monodepth
- DhruvJawalkar/Depth-Map-Prediction-from-a-Single-Image-using-a-Multi-Scale-Deep-Network
.
├── custom_transforms.py
├── data
│ └── add_dataset_files.md # add NYU dataset here
├── dataset.py
├── depth-prediction.ipynb # run this notebook
├── imgs # put your own images here
├── model_utils.py
├── nn_model.py
└── plot_utils.py