Skip to content

Latest commit

 

History

History
157 lines (107 loc) · 9.17 KB

detectnet-console-2.md

File metadata and controls

157 lines (107 loc) · 9.17 KB

Back | Next | Contents
Object Detection

Locating Objects with DetectNet

The previous recognition examples output class probabilities representing the entire input image. Next we're going to focus on object detection, and finding where in the frame various objects are located by extracting their bounding boxes. Unlike image classification, object detection networks are capable of detecting many different objects per frame.

The detectNet object accepts an image as input, and outputs a list of coordinates of the detected bounding boxes along with their classes and confidence values. detectNet is available to use from Python and C++. See below for various pre-trained detection models available for download. The default model used is a 91-class SSD-Mobilenet-v2 model trained on the MS COCO dataset, which achieves realtime inferencing performance on Jetson with TensorRT.

As examples of using detectNet we provide versions of a command-line interface for C++ and Python:

Later in the tutorial, we'll also cover object detection on live camera streams from C++ and Python:

Detecting Objects from the Command Line

The detectnet-console program locates objects in static images. Some of it's important command line parameters are:

  • the path to an input image (jpg, png, tga, bmp)
  • optional path to output image (jpg, png, tga, bmp)
  • optional --network flag which changes the detection model being used (the default is SSD-Mobilenet-v2).
  • optional --overlay flag which can be comma-separated combinations of box, labels, conf, and none
    • The default is --overlay=box,labels,conf which displays boxes, labels, and confidence values
  • optional --alpha value which sets the alpha blending value used during overlay (the default is 120).
  • optional --threshold value which sets the minimum threshold for detection (the default is 0.5).

Note that there are additional command line parameters available for loading custom models. Launch the application with the --help flag to recieve more info about using them, or see the Code Examples readme.

Here are some examples of detecting pedestrians in images with the default SSD-Mobilenet-v2 model:

# C++
$ ./detectnet-console --network=ssd-mobilenet-v2 images/peds_0.jpg output.jpg     # --network flag is optional

# Python
$ ./detectnet-console.py --network=ssd-mobilenet-v2 images/peds_0.jpg output.jpg  # --network flag is optional

# C++
$ ./detectnet-console images/peds_1.jpg output.jpg

# Python
$ ./detectnet-console.py images/peds_1.jpg output.jpg

note: the first time you run each model, TensorRT will take a few minutes to optimize the network.
          this optimized network file is then cached to disk, so future runs using the model will load faster.

Below are more detection examples output from the console programs. The 91-class MS COCO dataset that the SSD-based models were trained on include people, vehicles, animals, and assorted types of household objects to detect.

Various images are found under images/ for testing, such as cat_*.jpg, dog_*.jpg, horse_*.jpg, peds_*.jpg, ect.

Pre-trained Detection Models Available

Below is a table of the pre-trained object detection networks available for download, and the associated --network argument to detectnet-console used for loading the pre-trained models:

Model CLI argument NetworkType enum Object classes
SSD-Mobilenet-v1 ssd-mobilenet-v1 SSD_MOBILENET_V1 91 (COCO classes)
SSD-Mobilenet-v2 ssd-mobilenet-v2 SSD_MOBILENET_V2 91 (COCO classes)
SSD-Inception-v2 ssd-inception-v2 SSD_INCEPTION_V2 91 (COCO classes)
DetectNet-COCO-Dog coco-dog COCO_DOG dogs
DetectNet-COCO-Bottle coco-bottle COCO_BOTTLE bottles
DetectNet-COCO-Chair coco-chair COCO_CHAIR chairs
DetectNet-COCO-Airplane coco-airplane COCO_AIRPLANE airplanes
ped-100 pednet PEDNET pedestrians
multiped-500 multiped PEDNET_MULTI pedestrians, luggage
facenet-120 facenet FACENET faces

note: to download additional networks, run the Model Downloader tool
             $ cd jetson-inference/tools
             $ ./download-models.sh

Running Different Detection Models

You can specify which model to load by setting the --network flag on the command line to one of the corresponding CLI arguments from the table above. By default, SSD-Mobilenet-v2 if the optional --network flag isn't specified.

For example, if you chose to download SSD-Inception-v2 with the Model Downloader tool, you can use it like so:

# C++
$ ./detectnet-console --network=ssd-inception-v2 input.jpg output.jpg

# Python
$ ./detectnet-console.py --network=ssd-inception-v2 input.jpg output.jpg

Source Code

For reference, below is the source code to detectnet-console.py:

import jetson.inference
import jetson.utils

import argparse
import sys

# parse the command line
parser = argparse.ArgumentParser(description="Locate objects in an image using an object detection DNN.", 
                                 formatter_class=argparse.RawTextHelpFormatter, epilog=jetson.inference.detectNet.Usage())

parser.add_argument("file_in", type=str, help="filename of the input image to process")
parser.add_argument("file_out", type=str, help="filename of the output image to save")
parser.add_argument("--network", type=str, default="ssd-mobilenet-v2", help="pre-trained model to load (see below for options)")
parser.add_argument("--overlay", type=str, default="box,labels,conf", help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are:  'box', 'labels', 'conf', 'none'")
parser.add_argument("--threshold", type=float, default=0.5, help="minimum detection threshold to use")

opt = parser.parse_known_args()[0]

# load an image (into shared CPU/GPU memory)
img, width, height = jetson.utils.loadImageRGBA(opt.file_in)

# load the object detection network
net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold)

# detect objects in the image (with overlay)
detections = net.Detect(img, width, height, opt.overlay)

# print the detections
print("detected {:d} objects in image".format(len(detections)))

for detection in detections:
	print(detection)

# print out timing info
net.PrintProfilerTimes()

# save the output image with the bounding box overlays
jetson.utils.saveImageRGBA(opt.file_out, img, width, height)

Next, we'll run object detection on a live camera stream.

Next | Running the Live Camera Detection Demo
Back | Running the Live Camera Recognition Demo

© 2016-2019 NVIDIA | Table of Contents